• Willett, W. et al. Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 

    Google Scholar
     

  • Dhir, B. & Singla, N. Consumption pattern and health implications of convenience foods: a practical review. Curr. J. Appl. Sci. Technol. 38, 1–9 (2020).


    Google Scholar
     

  • Mezzenga, R., Schurtenberger, P., Burbidge, A. & Michel, M. Understanding foods as soft materials. Nat. Mater. 4, 729–740 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borges, S., Brassesco, M. E., Cunha, S. A., Coscueta, E. R. & Pintado, M. in Enzymatic Processes for Food Valorization (eds Chávez González, M. L. et al.) 265–284 (Elsevier, 2024).

  • Pouliot, Y., Conway, V. & Leclerc, P. L. in Food Processing: Principles and Applications (eds Clark, S. et al.) 33–60 (Wiley Blackwell, 2014).

  • Fotschki, J., Ogrodowczyk, A. M., Wróblewska, B. & Juśkiewicz, J. Side streams of vegetable processing and its bioactive compounds support microbiota, intestine milieu, and immune system. Molecules 28, 4340 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwyer, J. T. et al. Fortification and health: challenges and opportunities. Adv. Nutr. 6, 124–131 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, J. & Lee, D. W. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. npj Sci. Food 8, 50 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Zhang, T., Zhao, Y., Jiang, L. & Sui, X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem. 436, 137712 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. H., Lamsal, B. P. & Balasubramaniam, V. M. in Food Processing: Principles and Applications (eds Clark, S. et al.) 1–15 (Wiley Blackwell, 2014).

  • Toivonen, P. M. A. & Brummell, D. A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 48, 1–14 (2008).

    CAS 

    Google Scholar
     

  • Rani, H. & Bhardwaj, R. D. Quality attributes for barley malt: “the backbone of beer”. J. Food Sci. 86, 3322–3340 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Avezum, L. et al. Improving the nutritional quality of pulses via germination. Food Rev. Int. 39, 6011–6044 (2023).

    CAS 

    Google Scholar
     

  • Pointner, T. et al. Comprehensive analysis of oxidative stability and nutritional values of germinated linseed and sunflower seed oil. Food Chem. 454, 139790 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Miyahira, R. F. & Antunes, A. E. C. Bacteriological safety of sprouts: a brief review. Int. J. Food Microbiol. 352, 109266 (2021).

    PubMed 

    Google Scholar
     

  • Bilirgen, A. C. et al. Plant-based scaffolds in tissue engineering. ACS Biomater. Sci. Eng. 7, 926–938 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ansari, Z. & Goomer, S. Natural gums and carbohydrate-based polymers: potential encapsulants. Indo Global J. Pharm. Sci. 12, 1–20 (2022).

    CAS 

    Google Scholar
     

  • Ghazani, S. M. et al. Oleosome interfacial engineering to enhance their functionality in foods. Curr. Res. Food Sci. 8, 100682 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czapalay, E. S., Soleimanian, Y., Stobbs, J. A. & Marangoni, A. G. Plant tissue-based scaffolds filled with oil function as adipose tissue mimetics. Curr. Res. Food Sci. 10, 101002 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinkraus, K. H. Nutritional significance of fermented foods. Food Res. Int. 27, 259–267 (1994).


    Google Scholar
     

  • Ray, R. C. et al. in Trending Topics on Fermented Foods (eds Martin, J. G. P. et al.) 1–57 (Springer, 2024).

  • Castro-Alba, V. et al. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J. Sci. Food Agric. 99, 5239–5248 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrau, F., Boido, E. & Ramey, D. Yeasts for low input winemaking: microbial terroir and flavor differentiation. Adv. Appl. Microbiol. 111, 89–121 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bravo-Núñez, Á., Golding, M., Gómez, M. & Matia-Merino, L. Emulsification properties of garlic aqueous extract: effect of heat treatment and pH modification. Foods 12, 3721 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buhl, T. F., Christensen, C. H. & Hammershøj, M. Aquafaba as an egg white substitute in food foams and emulsions: protein composition and functional behavior. Food Hydrocoll. 96, 354–364 (2019).

    CAS 

    Google Scholar
     

  • Mishra, K. Foam Formation and Processing of Glyceride Melt Suspensions with Crystal Fraction for Additive Manufacturing Applications. PhD thesis, ETH Zürich (2021).

  • Lammers, V. R. G. A Novel Technology to Tailor Foam Structure in Gluten-Free Bakery Product Systems. PhD thesis, ETH Zürich (2016).

  • Koller, C. High-Pressure Micro-Foaming of Fat-Continuous Confectionery Systems. PhD thesis, ETH Zürich (2015).

  • Oliveira, L. C., Schmiele, M. & Steel, C. J. Development of whole grain wheat flour extruded cereal and process impacts on color, expansion, and dry and bowl-life texture. LWT 75, 261–270 (2017).

    CAS 

    Google Scholar
     

  • Liu, C. et al. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology. J. Cereal Sci. 54, 473–480 (2011).

    CAS 

    Google Scholar
     

  • Ullah, I. et al. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll 89, 512–522 (2019).

    CAS 

    Google Scholar
     

  • Fox, P. F. Proteolysis during cheese manufacture and ripening. J. Dairy Sci. 72, 1379–1400 (1989).

    CAS 

    Google Scholar
     

  • Park, S. H., Na, Y., Kim, J., Kang, S. D. & Park, K. H. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci. Biotechnol. 27, 299–312 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Nicholson, R. A. & Marangoni, A. G. Enzymatic glycerolysis converts vegetable oils into structural fats with the potential to replace palm oil in food products. Nat. Food 1, 684–692 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Frias, J., Peñas, E. & Martinez-Villaluenga, C. in Fermented Foods in Health and Disease Prevention (eds Frias, J. et al.) 385–416 (Elsevier, 2017).

  • Wollstonecroft, M. M. Investigating the role of food processing in human evolution: a niche construction approach. Archaeol. Anthropol. Sci. 3, 141–150 (2011).


    Google Scholar
     

  • Beane, K. E. et al. Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Appl. Biol. Chem. 64, 36 (2021).

    CAS 

    Google Scholar
     

  • Prückler, M. et al. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Food Microbiol. 49, 211–219 (2015).

    PubMed 

    Google Scholar
     

  • Meignen, B. et al. Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiol. 18, 239–245 (2001).

    CAS 

    Google Scholar
     

  • Dobson, S. & Marangoni, A. G. Methodology and development of a high-protein plant-based cheese alternative. Curr. Res. Food Sci. 7, 100632 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harper, A. R., Dobson, R. C. J., Morris, V. K. & Moggré, G. J. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb. Biotechnol. 15, 1404–1421 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guinee, T. in Advanced Dairy Chemistry Vol. 1B (eds McSweeney, P. & O’Mahony, J.) 347–415 (Springer, 2016).

  • Hinrichs, J. Incorporation of whey proteins in cheese. Int. Dairy J. 11, 495–503 (2001).

    CAS 

    Google Scholar
     

  • Joo, K. H., Kerr, W. L. & Cavender, G. A. The effects of okara ratio and particle size on the physical properties and consumer acceptance of tofu. Foods 12, 3004 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, K. et al. Valorization of cocoa pod side streams improves nutritional and sustainability aspects of chocolate. Nat. Food 5, 423–432 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buican, B. C., Colibaba, L. C., Luchian, C. E., Kallithraka, S. & Cotea, V. V. “Orange” wine—the resurgence of an ancient winemaking technique: a review. Agriculture 13, 1750 (2023).

    CAS 

    Google Scholar
     

  • Pswarayi, F. & Gänzle, M. African cereal fermentations: a review on fermentation processes and microbial composition of non-alcoholic fermented cereal foods and beverages. Int. J. Food Microbiol. 378, 109815 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Houngbédji, M. & Jespersen, J. S. Wilfrid Padonou, S. & Jespersen, L. Cereal-based fermented foods as microbiota-directed products for improved child nutrition and health in sub-Saharan Africa. Crit. Rev. Food Sci. Nutr. 65, 3422–3443 (2025).

    PubMed 

    Google Scholar