• Steffen, W. et al. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 1, 54–63 (2020).


    Google Scholar
     

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS 

    Google Scholar
     

  • O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).


    Google Scholar
     

  • Gruber, N. et al. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 4, 119–134 (2023).

    CAS 

    Google Scholar
     

  • Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    CAS 

    Google Scholar
     

  • Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).


    Google Scholar
     

  • Behrenfeld, M. J. et al. Biospheric primary production during an ENSO transition. Science 291, 2594–2597 (2001).

    CAS 

    Google Scholar
     

  • Crisp, D. et al. How well do we understand the land–ocean–atmosphere carbon cycle? Rev. Geophys. 60, e2021RG000736 (2022).


    Google Scholar
     

  • Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    CAS 

    Google Scholar
     

  • O’Sullivan, M. et al. Climate‐driven variability and trends in plant productivity over recent decades based on three global products. Glob. Biogeochem. Cycles 34, e2020GB006613 (2020).


    Google Scholar
     

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).


    Google Scholar
     

  • Zhang, Y. et al. Earth’s record-high greenness and its attributions in 2020. Remote Sens. Environ. 316, 114494 (2025).


    Google Scholar
     

  • Novick, K. A. et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. 47, 3561–3589 (2024).

    CAS 

    Google Scholar
     

  • Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

    CAS 

    Google Scholar
     

  • Zhang, Y., Song, C., Band, L. E. & Sun, G. No proportional increase of terrestrial gross carbon sequestration from the greening earth. JGR Biogeosci. 124, 2540–2553 (2019).

    CAS 

    Google Scholar
     

  • Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    CAS 

    Google Scholar
     

  • Westberry, T. K., Silsbe, G. M. & Behrenfeld, M. J. Gross and net primary production in the global ocean: an ocean color remote sensing perspective. Earth Sci. Rev. 237, 104322 (2023).


    Google Scholar
     

  • Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett. 14, 124011 (2019).

    CAS 

    Google Scholar
     

  • Ryan-Keogh, T. J., Tagliabue, A. & Thomalla, S. J. Global decline in net primary production underestimated by climate models. Commun. Earth Environ. 6, 75 (2025).


    Google Scholar
     

  • Ryan-Keogh, T. J., Thomalla, S. J., Chang, N. & Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 15, 4829–4848 (2023).


    Google Scholar
     

  • Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).


    Google Scholar
     

  • Yu, T. et al. Estimation of global vegetation productivity from global land surface satellite data. Remote Sens. 10, 327 (2018).


    Google Scholar
     

  • Endsley, K. A., Zhao, M., Kimball, J. S. & Devadiga, S. Continuity of global MODIS terrestrial primary productivity estimates in the VIIRS era using model‐data fusion. J. Geophys. Res. Biogeosci. 128, e2023JG007457 (2023).


    Google Scholar
     

  • Ito, A. A historical meta‐analysis of global terrestrial net primary productivity: are estimates converging? Glob. Change Biol. 17, 3161–3175 (2011).


    Google Scholar
     

  • Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon‐based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22, 1–18 (2008).


    Google Scholar
     

  • Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).

    CAS 

    Google Scholar
     

  • Brewin, R. J. et al. Sensing the ocean biological carbon pump from space: a review of capabilities, concepts, research gaps and future developments. Earth Sci. Rev. 217, 103604 (2021).

    CAS 

    Google Scholar
     

  • Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model. Earth Syst. 14, e2021MS002946 (2022).


    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).


    Google Scholar
     

  • Román, M. O. et al. Continuity between NASA MODIS collection 6.1 and VIIRS collection 2 land products. Remote Sens. Environ. 302, 113963 (2024).


    Google Scholar
     

  • McClain, C. R., Franz, B. A. & Werdell, P. J. Genesis and evolution of NASA’s satellite ocean color program. Front. Remote Sens. 3, 938006 (2022).


    Google Scholar
     

  • Terhaar, J. et al. Assessment of global ocean biogeochemistry models for ocean carbon sink estimates in RECCAP2 and recommendations for future studies. J. Adv. Model. Earth Syst. 16, e2023MS003840 (2024).


    Google Scholar
     

  • Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    CAS 

    Google Scholar
     

  • Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).


    Google Scholar
     

  • Sallée, J.-B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).


    Google Scholar
     

  • Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    CAS 

    Google Scholar
     

  • D’Alelio, D. et al. Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre. Sci. Rep. 10, 3287 (2020).


    Google Scholar
     

  • Li, Z. et al. Ocean-scale patterns of environment and climate changes driving global marine phytoplankton biomass dynamics. Sci. Adv. 10, eadm7556 (2024).


    Google Scholar
     

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS 

    Google Scholar
     

  • Chen, S. et al. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 631, 111–117 (2024).

  • Zhang, Y. et al. Global fire modelling and control attributions based on the ensemble machine learning and satellite observations. Sci. Remote Sens. 7, 100088 (2023).


    Google Scholar
     

  • Thomalla, S. J., Nicholson, S.-A., Ryan-Keogh, T. J. & Smith, M. E. Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers. Nat. Clim. Change 13, 975–984 (2023).


    Google Scholar
     

  • Lewis, K. M., Van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202 (2020).

    CAS 

    Google Scholar
     

  • Xue, T. et al. Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control. Biogeosciences 21, 2473–2491 (2024).


    Google Scholar
     

  • Thirumalai, K. et al. Future increase in extreme El Niño supported by past glacial changes. Nature 634, 374–380 (2024).

  • Hu, K., Huang, G., Huang, P., Kosaka, Y. & Xie, S.-P. Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci. 14, 377–382 (2021).

    CAS 

    Google Scholar
     

  • Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).


    Google Scholar
     

  • Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).


    Google Scholar
     

  • Fernández-Martínez, M. et al. Diagnosing destabilization risk in global land carbon sinks. Nature 615, 848–853 (2023).


    Google Scholar
     

  • Friedlingstein, P. et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).


    Google Scholar
     

  • Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355–358 (2017).

    CAS 

    Google Scholar
     

  • Zhao, Q., Zhu, Z., Zeng, H., Zhao, W. & Myneni, R. B. Future greening of the Earth may not be as large as previously predicted. Agric. Meteorol. 292, 108111 (2020).


    Google Scholar
     

  • Cao, D. et al. Projected increases in global terrestrial net primary productivity loss caused by drought under climate change. Earth’s Futur. 10, e2022EF002681 (2022).


    Google Scholar
     

  • Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    CAS 

    Google Scholar
     

  • Hou, H. et al. Future land use/land cover change has nontrivial and potentially dominant impact on global gross primary productivity. Earth’s Futur. 10, e2021EF002628 (2022).


    Google Scholar
     

  • Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).

    CAS 

    Google Scholar
     

  • Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).


    Google Scholar
     

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 

    Google Scholar
     

  • Hoegh-Guldberg, O., Northrop, E. & Lubchenco, J. The ocean is key to achieving climate and societal goals. Science 365, 1372–1374 (2019).

    CAS 

    Google Scholar
     

  • Huang, X. et al. High spatial resolution vegetation gross primary production product: algorithm and validation. Sci. Remote Sens. 5, 100049 (2022).


    Google Scholar
     

  • Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite‐based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    CAS 

    Google Scholar
     

  • EPPLEY, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1971).


    Google Scholar
     

  • Twedt, K., Xiong, X., Geng, X., Wilson, T. & Mu, Q. Impact of satellite orbit drift on MODIS Earth scene observations used in calibration of the reflective solar bands. In Proc. Earth Observing Systems XXVIII Vol. 12685, 158–167 (SPIE, 2023).

  • MODIS/Aqua ocean color reprocessing 2022.0. NASA https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/aqua/ (2025).

  • Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS Collection 6 Land Cover product. Remote Sens. Environ. 222, 183–194 (2019).


    Google Scholar
     

  • Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).


    Google Scholar
     

  • Marine Ecoregions and Pelagic Provinces of the World. GIS Layers Developed by The Nature Conservancy with Multiple Partners, Combined from Spalding et al. (2007) and Spalding et al. (2012) (The Nature Conservancy, 2012).

  • Dang, X., Peng, H., Wang, X. & Zhang, H. Theil–Sen estimators in a multiple linear regression model. Olemiss Edu. 2, 1–30 (2008).

  • Tomé, A. R. & Miranda, P. M. A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 31, 1–4 (2004).


    Google Scholar
     

  • pwlf: piecewise linear fitting https://jekel.me/piecewise_linear_fit_py (2025).

  • Bowen, N. K. & Guo, S. Structural Equation Modeling (ed. Brockveld, K. C.) Oxford Univ. Press, 2011).

  • Li, Z. & Cassar, N. A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature. Biogeosciences 14, 5015–5027 (2017).

    CAS 

    Google Scholar
     

  • Zhang, Y. & Cassar, N. Data and Python codes for ‘Contrasting biological production trends over land and ocean’. Open Science Framework https://doi.org/10.17605/OSF.IO/86K3N (2025).

  • Zhang, Y. Interactive tool for ‘Planetary Photosynthetic Productivity’. Google Earth Engine App https://planetlab.users.earthengine.app/view/p3npp (2025).