• Theodorou, P. The effects of urbanisation on ecological interactions. Curr. Opin. Insect Sci. 52, 100922 (2022).


    Google Scholar
     

  • Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).


    Google Scholar
     

  • Fenoglio, M. S., Calviño, A., González, E., Salvo, A. & Videla, M. Urbanisation drivers and underlying mechanisms of terrestrial insect diversity loss in cities. Ecol. Entomol. 46, 757–771 (2021).


    Google Scholar
     

  • Gong et al. Climate and edaphic factors drive soil nematode diversity and community composition in urban ecosystems. Soil Biol. Biochem. 180, 109010 (2023).


    Google Scholar
     

  • Urban, M. C. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Change 14, 436–447 (2024).


    Google Scholar
     

  • Nelson, A. E. & Forbes, A. A. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales. PLoS ONE 9, e102127 (2014).


    Google Scholar
     

  • Li, Z. P. et al. Land use decouples parasite–metazoan host biodiversity associations in soils across subtropical and temperate zones in China. Global Ecol. Biogeogr. 32, 2164–2176 (2023).


    Google Scholar
     

  • Kim, S. W. & Brown, R. D. Urban heat island (UHI) intensity and magnitude estimations: a systematic literature review. Sci. Total Environ. 779, 146389 (2021).


    Google Scholar
     

  • Robinson, J. M., Cameron, R. & Parker, B. The effects of anthropogenic sound and artificial light exposure on microbiomes: ecological and public health implications. Front. Ecol. Evol. 9, 662588 (2021).


    Google Scholar
     

  • Groffman, P. M. et al. Ecological homogenization of residential macrosystems. Nat. Ecol. Evol. 1, 0191 (2017).


    Google Scholar
     

  • Mahtta, R. et al. Urban land expansion: the role of population and economic growth for 300+ cities. npj Urban Sustain. 2, 5 (2022).


    Google Scholar
     

  • O’Riordan, R., Davies, J., Stevens, C., Quinton, J. N. & Boyko, C. The ecosystem services of urban soils: a review. Geoderma 395, 115076 (2021).


    Google Scholar
     

  • Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).


    Google Scholar
     

  • Jouquet, P. et al. Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena 74, 13–21 (2008).


    Google Scholar
     

  • Kakeh, J. et al. Biocrust islands enhance infiltration, and reduce runoff and sediment yield on a heavily salinized dryland soil. Geoderma 404, 115329 (2021).


    Google Scholar
     

  • Das, N. & Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011, 941810 (2011).


    Google Scholar
     

  • Sun, X. et al. Harnessing soil biodiversity to promote human health in cities. npj Urban Sustain. 3, 5 (2023).


    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide. Nat. Clim. Change 13, 450–455 (2023).


    Google Scholar
     

  • Rawlins, B. G., Harris, J., Price, S. & Bartlett, M. A review of climate change impacts on urban soil functions with examples and policy insights from England, UK. Soil Use Manag. 31, 46–61 (2015).


    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).


    Google Scholar
     

  • Whitehead, J., Roy, J., Hempel, S. & Rillig, M. C. Soil microbial communities shift along an urban gradient in Berlin, Germany. Front. Microbiol. 13, 972052 (2022).

  • Bock, H. W. et al. Soil animal communities demonstrate simplification without homogenization along an urban gradient. Ecol. Appl. 34, e3039 (2024).


    Google Scholar
     

  • Peng, Z. et al. Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally. Nat. Commun. 15, 3624 (2024).


    Google Scholar
     

  • Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).


    Google Scholar
     

  • Christel, A. et al. Urban land uses shape soil microbial abundance and diversity. Sci. Total Environ. 883, 163455 (2023).


    Google Scholar
     

  • Szabó, B. et al. Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis. Sci. Total Environ. 859, 160145 (2023).


    Google Scholar
     

  • Liu, L. et al. Urbanization reduces soil microbial network complexity and stability in the megacity of Shanghai. Sci. Total Environ. 893, 164915 (2023).


    Google Scholar
     

  • Zhou, J. et al. Urbanization increases stochasticity and reduces the ecological stability of microbial communities in amphibian hosts. Front. Microbiol. 13, 1108662 (2023).


    Google Scholar
     

  • Classen, A. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere 6, 130 (2015).


    Google Scholar
     

  • Maher, R. L., Rice, M. M., McMinds, R., Burkepile, D. E. & Vega Thurber, R. Multiple stressors interact primarily through antagonism to drive changes in the coral microbiome. Sci. Rep. 9, 6834 (2019).


    Google Scholar
     

  • Ferguson, R. M. et al. The ecological impacts of multiple environmental stressors on coastal biofilm bacteria. Global Change Biol. 27, 3166–3178 (2021).


    Google Scholar
     

  • Belay, A. M., Selassie, Y. G., Tsegaye, E. A., Meshesha, D. T. & Addis, H. K. Soil pH mapping as a function of land use, elevation, and rainfall in the lake tana basin, northwestern of ethiopia. Agrosyst. Geosci. Environ. 6, e20420 (2023).


    Google Scholar
     

  • Liu, J. et al. Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China. J. Soils Sediments 18, 1853–1864 (2018).


    Google Scholar
     

  • Barnett, S. E., Youngblut, N. D. & Buckley, D. H. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol. Ecol. 96, fiz194 (2020).


    Google Scholar
     

  • Rate, A. W. in Urban Soils 63–84 (Springer, 2022).

  • Marcacci, G. et al. Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. Global Change Biol. 27, 4980–4994 (2021).


    Google Scholar
     

  • Li, Z. P. et al. Colonization ability and uniformity of resources and environmental factors determine biological homogenization of soil protists in human land-use systems. Global Change Biol. 30, e17411 (2024).


    Google Scholar
     

  • Amossé, J. et al. Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages. Eur. J. Soil Biol. 73, 46–58 (2016).


    Google Scholar
     

  • Phillips, H. R. P. et al. Global change and their environmental stressors have a significant impact on soil biodiversity—a meta-analysis. iScience 27, 110540 (2024).


    Google Scholar
     

  • Epp Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).


    Google Scholar
     

  • Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).


    Google Scholar
     

  • Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).


    Google Scholar
     

  • Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).


    Google Scholar
     

  • Larsen, S. et al. Climatic effects on the synchrony and stability of temperate headwater invertebrates over four decades. Global Change Biol. 30, e17017 (2024).


    Google Scholar
     

  • Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).


    Google Scholar
     

  • Caruso, T., Melecis, V., Kagainis, U. & Bolger, T. Population asynchrony alone does not explain stability in species‐rich soil animal assemblages: the stabilizing role of forest age on oribatid mite communities. J. Anim. Ecol. 89, 1520–1531 (2020).


    Google Scholar
     

  • Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).


    Google Scholar
     

  • Lai, K. Y. et al. Nexus between residential air pollution and physiological stress is moderated by greenness. Nat. Cities 1, 225–237 (2024).


    Google Scholar
     

  • Luo, S. et al. Impact of socioeconomic factors on soil-borne animal pathogenic fungi in urban greenspaces. Nat. Cities 1, 406–412 (2024).


    Google Scholar
     

  • Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E. & House, C. H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl Acad. Sci. USA 105, 10583–10588 (2008).


    Google Scholar
     

  • Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).


    Google Scholar
     

  • Adams, R. I., Miletto, M., Taylor, J. W. & Bruns, T. D. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 7, 1262–1273 (2013).


    Google Scholar
     

  • White, T. J., Bruns, T., Lee, S. J. W. T. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications 315–322 (Academic Press, 1990).

  • Fan, L. et al. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2018.12.069 (2019).

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).


    Google Scholar
     

  • Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).


    Google Scholar
     

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).


    Google Scholar
     

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).


    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).


    Google Scholar
     

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).


    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/

  • Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).


    Google Scholar
     

  • Jurburg, S. D., Keil, P., Singh, B. K. & Chase, J. M. All together now: limitations and recommendations for the simultaneous analysis of all eukaryotic soil sequences. Mol. Ecol. Resour. 21, 1759–1771 (2021).


    Google Scholar
     

  • Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).


    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).


    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 https://cran.r-project.org/web/packages/vegan/index.html (2020).

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12512 (2016).

  • Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means version 1.11.2 https://cran.r-project.org/package=emmeans (2019).