• Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    ADS 

    Google Scholar
     

  • Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).


    Google Scholar
     

  • Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).

  • Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2021).


    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).


    Google Scholar
     

  • Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271 (2014).


    Google Scholar
     

  • Croquette, M. et al. Recent advances toward mesoscopic quantum optomechanics. AVS Quantum Sci. 5, 014403 (2023).

    ADS 

    Google Scholar
     

  • DeWitt, C. M. & Rickles, D. (eds) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (Edition Open Sources, 2011).

  • Belenchia, A. et al. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D 98, 126009 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Guo, J., Norte, R. & Gröblacher, S. Feedback cooling of a room temperature mechanical oscillator close to its motional ground state. Phys. Rev. Lett. 123, 223602 (2019).

    ADS 

    Google Scholar
     

  • Tendick, L., Kampermann, H. & Bruß, D. Quantifying necessary quantum resources for nonlocality. Phys. Rev. Res. 4, L012002 (2022).

    ADS 

    Google Scholar
     

  • Roda-Llordes, M., Riera-Campeny, A., Candoli, D., Grochowski, P. T. & Romero-Isart, O. Macroscopic quantum superpositions via dynamics in a wide double-well potential. Phys. Rev. Lett. 132, 023601 (2024).

    ADS 

    Google Scholar
     

  • Paris, M. G. A., Illuminati, F., Serafini, A. & De Siena, S. Purity of Gaussian states: measurement schemes and time evolution in noisy channels. Phys. Rev. A 68, 012314 (2003).

    ADS 

    Google Scholar
     

  • Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).

    ADS 

    Google Scholar
     

  • Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Youssefi, A., Kono, S., Chegnizadeh, M. & Kippenberg, T. J. A squeezed mechanical oscillator with millisecond quantum decoherence. Nat. Phys. 19, 1697 (2023).


    Google Scholar
     

  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011).

    ADS 

    Google Scholar
     

  • Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).

    ADS 

    Google Scholar
     

  • Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    ADS 

    Google Scholar
     

  • Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 595, 378 (2021).

    ADS 

    Google Scholar
     

  • Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett. 124, 173601 (2020).

    ADS 

    Google Scholar
     

  • Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, 168 (2021).


    Google Scholar
     

  • Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373 (2021).

    ADS 

    Google Scholar
     

  • Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892 (2020).

    ADS 

    Google Scholar
     

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).

    ADS 

    Google Scholar
     

  • Engelsen, N. J., Beccari, A. & Kippenberg, T. J. Ultrahigh-quality-factor micro-and nanomechanical resonators using dissipation dilution. Nat. Nanotechnol. 19, 725 (2024).


    Google Scholar
     

  • Huang, G., Beccari, A., Engelsen, N. J. & Kippenberg, T. J. Room-temperature quantum optomechanics using an ultralow noise cavity. Nature 626, 512–516 (2024).

    ADS 

    Google Scholar
     

  • Schäfer, J., Rudolph, H., Hornberger, K. & Stickler, B. A. Cooling nanorotors by elliptic coherent scattering. Phys. Rev. Lett. 126, 163603 (2021).

    ADS 

    Google Scholar
     

  • Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).

    ADS 

    Google Scholar
     

  • Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res. 2, 043054 (2020).


    Google Scholar
     

  • Stickler, B. A., Hornberger, K. & Kim, M. S. Quantum rotations of nanoparticles. Nat. Rev. Phys. 3, 589 (2021).


    Google Scholar
     

  • Gao, J. et al. Feedback cooling a levitated nanoparticle’s libration to below 100 phonons. Phys. Rev. Res. 6, 033009 (2024).


    Google Scholar
     

  • Parniak, M., Galinskiy, I., Zwettler, T. & Polzik, E. S. High-frequency broadband laser phase noise cancellation using a delay line. Opt. Express 29, 6935 (2021).

    ADS 

    Google Scholar
     

  • Pontin, A., Fu, H., Toroš, M., Monteiro, T. S. & Barker, P. F. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle. Nat. Phys. 19, 1003 (2023).


    Google Scholar
     

  • Kamba, M., Shimizu, R. & Aikawa, K. Nanoscale feedback control of six degrees of freedom of a near-sphere. Nat. Commun. 14, 7943 (2023).

    ADS 

    Google Scholar
     

  • Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415 (2008).


    Google Scholar
     

  • Rudolph, H., Schäfer, J., Stickler, B. A. & Hornberger, K. Theory of nanoparticle cooling by elliptic coherent scattering. Phys. Rev. A 103, 043514 (2021).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Meyer, N. et al. Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise. Phys. Rev. Lett. 123, 153601 (2019).

    ADS 

    Google Scholar
     

  • Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Piotrowski, J. et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nat. Phys. 19, 1009 (2023).


    Google Scholar
     

  • Jayich, A. M. et al. Cryogenic optomechanics with a Si3N4 membrane and classical laser noise. New J. Phys. 14, 115018 (2012).

    ADS 

    Google Scholar
     

  • Safavi-Naeini, A. H. et al. Laser noise in cavity-optomechanical cooling and thermometry. New J. Phys. 15, 035007 (2013).

    ADS 

    Google Scholar
     

  • Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

    ADS 

    Google Scholar
     

  • van der Laan, F. et al. Sub-Kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127, 123605 (2021).

    ADS 

    Google Scholar
     

  • Rabl, P., Genes, C., Hammerer, K. & Aspelmeyer, M. Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009).

    ADS 

    Google Scholar
     

  • Rossi, M. et al. Quantum delocalization of a levitated nanoparticle. Phys. Rev. Lett. https://doi.org/10.1103/2yzc-fsm3 (2025).

  • Stickler, B. A. et al. Probing macroscopic quantum superpositions with nanorotors. New J. Phys. 20, 122001 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Kustura, K. et al. Mechanical squeezing via unstable dynamics in a microcavity. Phys. Rev. Lett. 128, 143601 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ma, Y., Khosla, K. E., Stickler, B. A. & Kim, M. S. Quantum persistent tennis racket dynamics of nanorotors. Phys. Rev. Lett. 125, 053604 (2020).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Bykov, D. S., Dania, L., Goschin, F. & Northup, T. E. A nanoparticle stored with an atomic ion in a linear Paul trap. Preprint at https://arxiv.org/abs/2403.02034 (2024).

  • Najera-Santos, B.-L. et al. High-sensitivity ac-charge detection with a MHz-frequency fluxonium qubit. Phys. Rev. X 14, 011007 (2024).


    Google Scholar