• Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. USA 112, 3866–3873 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Klingler, S. et al. Spin-wave logic devices based on isotropic forward volume magnetostatic waves. Appl. Phys. Lett. 106, 212406 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, T. et al. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett. 110, 152401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Q. et al. Reconfigurable nanoscale spin-wave directional coupler. Sci. Adv. 4, e1701517 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765 (2020).

    Article 

    Google Scholar
     

  • Vogt, K. et al. Realization of a spin-wave multiplexer. Nat. Commun. 5, 3727 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Litvinenko, A. et al. A spinwave ising machine. Commun. Phys. 6, 227 (2023).

  • Lee, K.-S. & Kim, S.-K. Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sato, N., Sekiguchi, K. & Nozaki, Y. Electrical demonstration of spin-wave logic operation. Appl. Phys. Exp. 6, 063001 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rana, B. & Otani, Y. Voltage-controlled reconfigurable spin-wave nanochannels and logic devices. Phys. Rev. Appl. 9, 014033 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Reconfigurable spin-wave interferometer at the nanoscale. Nano Lett. 21, 6237–6244 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Hybrid magnonics: physics, circuits and applications for coherent information processing. J. Appl. Phys. 128, 130902 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zare Rameshti, B. et al. Cavity magnonics. Phys. Rep. 979, 1–61 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Yuan, H., Cao, Y., Kamra, A., Duine, R. A. & Yan, P. Quantum magnonics: when magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Soykal, O. O. & Flatté, M. E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stenning, G. B. G. et al. Magnetic control of a meta-molecule. Opt. Express 21, 1456–1464 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huebl, H. et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bhoi, B. et al. Study of photon-magnon coupling in a yig-film split-ring resonant system. J. Appl. Phys. 116, 243906 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bai, L. et al. Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 114, 227201 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices. Phys. Rev. Lett. 123, 107701 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, J. T. & Liu, L. Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett. 123, 107702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Coherent gate operations in hybrid magnonics. Phys. Rev. Lett. 126, 207202 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambert, N. J., Haigh, J. A., Langenfeld, S., Doherty, A. C. & Ferguson, A. J. Cavity-mediated coherent coupling of magnetic moments. Phys. Rev. A 93, 021803 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bai, L. et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Phys. Rev. Lett. 118, 217201 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yuan, H. Y., Zheng, S., Ficek, Z., He, Q. Y. & Yung, M.-H. Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B 101, 014419 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Coherent coupling of two remote magnonic resonators mediated by superconducting circuits. Phys. Rev. Lett. 128, 047701 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-Q. et al. Giant spin ensembles in waveguide magnonics. Nat. Commun. 13, 7580 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, J. et al. Stationary quantum entanglement and steering between two distant macromagnets. Quantum Sci. Tech. 8, 035022 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zare Rameshti, B. & Bauer, G. E. W. Indirect coupling of magnons by cavity photons. Phys. Rev. B 97, 014419 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, F.-X. et al. Remote generation of magnon schrödinger cat state via magnon-photon entanglement. Phys. Rev. Lett. 127, 087203 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, W.-J., Wang, Y.-P., Wu, J.-Z., Li, J. & You, J. Q. Remote magnon entanglement between two massive ferrimagnetic spheres via cavity optomagnonics. Phys. Rev. A 104, 023711 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ren, Y.-l, Xie, J.-K, Li, X.-K, Ma, S.-l & Li, F.-l Long-range generation of a magnon-magnon entangled state. Phys. Rev. B 105, 094422 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, J., Fan, X.-G., Xiong, W., Wang, D. & Ye, L. Nonreciprocal entanglement in cavity-magnon optomechanics. Phys. Rev. B 108, 024105 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grigoryan, V. L. & Xia, K. Cavity-mediated dissipative spin-spin coupling. Phys. Rev. B 100, 014415 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, P.-C., Rao, J. W., Gui, Y. S., Jin, X. & Hu, C.-M. Cavity-mediated dissipative coupling of distant magnetic moments: theory and experiment. Phys. Rev. B 100, 094415 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rao, J. et al. Meterscale strong coupling between magnons and photons. Phys. Rev. Lett. 131, 106702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y.-P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Clemmen, S., Farsi, A., Ramelow, S. & Gaeta, A. L. Ramsey interference with single photons. Phys. Rev. Lett. 117, 223601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wolz, T. et al. Introducing coherent time control to cavity magnon-polariton modes. Commun. Phys. 3, 3 (2020)

  • Egger, D. et al. Pulsed reset protocol for fixed-frequency superconducting qubits. Phys. Rev. Appl. 10, 044030 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Palmer, C. & Loewen, E. Diffraction Grating Handbook (Newport Corporation, 2005).

  • Wolski, S. P. et al. Dissipation-based quantum sensing of magnons with a superconducting qubit. Phys. Rev. Lett. 125, 117701 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, D. et al. Quantum control of a single magnon in a macroscopic spin system. Phys. Rev. Lett. 130, 193603 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar