• Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).


    Google Scholar
     

  • Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018).

    ADS 

    Google Scholar
     

  • Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon 11, 361–365 (2017).

    ADS 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    ADS 

    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS 

    Google Scholar
     

  • Menssen, A. J. et al. Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017).

    ADS 

    Google Scholar
     

  • Faleo, T. et al. Entanglement-induced collective many-body interference. Sci. Adv. 10, eadp9030 (2024).


    Google Scholar
     

  • Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    ADS 

    Google Scholar
     

  • Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

  • Heindel, T., Kim, J.-H., Gregersen, N., Rastelli, A. & Reitzenstein, S. Quantum dots for photonic quantum information technology. Adv. Opt. Photon 15, 613–738 (2023).


    Google Scholar
     

  • Frick, S., Keil, R., Remesh, V. & Weihs, G. Single-photon sources for multi-photon applications. Photonic Quant. Technol. 1, 53–84 (2023).


    Google Scholar
     

  • Karli, Y. et al. Controlling the photon number coherence of solid-state quantum light sources for quantum cryptography. npj Quantum Inf. 10, 17 (2024).

    ADS 

    Google Scholar
     

  • Bracht, T. K. et al. Swing-up of quantum emitter population using detuned pulses. PRX Quantum 2, 40354 (2021).


    Google Scholar
     

  • Karli, Y. et al. Super scheme in action: experimental demonstration of red-detuned excitation of a quantum emitter. Nano Lett. 22, 6567–6572 (2022).

    ADS 

    Google Scholar
     

  • Wilbur, G. et al. Notch-filtered adiabatic rapid passage for optically driven quantum light sources. APL Photonics 7, 111302 (2022).

    ADS 

    Google Scholar
     

  • Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

    ADS 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS 

    Google Scholar
     

  • Sbresny, F. et al. Stimulated generation of indistinguishable single photons from a quantum ladder system. Phys. Rev. Lett. 128, 093603 (2022).

    ADS 

    Google Scholar
     

  • Remesh, V. et al. Compact chirped fiber Bragg gratings for single-photon generation from quantum dots. APL Photonics 8, 101301 (2023).

    ADS 

    Google Scholar
     

  • Karli, Y. et al. Robust single-photon generation for quantum information enabled by stimulated adiabatic rapid passage. Appl. Phys. Lett. 125, 254002 (2024).

  • Ramachandran, A., Fraser-Leach, J., O’Neal, S., Deppe, D. G. & Hall, K. C. Experimental quantification of the robustness of adiabatic rapid passage for quantum state inversion in semiconductor quantum dots. Opt. Express 29, 41766 (2021).

    ADS 

    Google Scholar
     

  • Kappe, F. et al. Chirped pulses meet quantum dots: innovations, challenges, and future perspectives. Adv. Quantum Technol. 8, 2300352 (2024).

  • Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of bell’s inequality without spectral and temporal filtering. Phys. Rev. B. 88, 041306 (2013).

    ADS 

    Google Scholar
     

  • Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7, 527–531 (2013).

    ADS 

    Google Scholar
     

  • Versteegh, M. A. et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun. 5, 5298 (2014).

    ADS 

    Google Scholar
     

  • Seidl, S. et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113 (2006).

  • Zhang, J. et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).

    ADS 

    Google Scholar
     

  • Trotta, R., Martín-Sánchez, J., Daruka, I., Ortix, C. & Rastelli, A. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys. Rev. Lett. 114, 150502 (2015).

    ADS 

    Google Scholar
     

  • Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    ADS 

    Google Scholar
     

  • Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

    ADS 

    Google Scholar
     

  • Kowalik, K. et al. Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett. 86, 041907 (2005).

  • Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

    ADS 

    Google Scholar
     

  • Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    ADS 

    Google Scholar
     

  • Münzberg, J. et al. Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators. APL Photonics 7, 070802 (2022).

    ADS 

    Google Scholar
     

  • Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source. Laser Photonics Rev. 11, 1600297 (2017).

    ADS 

    Google Scholar
     

  • Cao, H. et al. Photonic source of heralded Greenberger-Horne-Zeilinger states. Phys. Rev. Lett. 132, 130604 (2024).

    ADS 

    Google Scholar
     

  • Chen, S. et al. Heralded three-photon entanglement from a single-photon source on a photonic chip. Phys. Rev. Lett. 132, 130603 (2024).

    ADS 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    ADS 

    Google Scholar
     

  • Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).


    Google Scholar
     

  • Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

    ADS 

    Google Scholar
     

  • Hanschke, L. et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf. 4, 43 (2018).

    ADS 

    Google Scholar
     

  • Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    ADS 

    Google Scholar
     

  • Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    ADS 

    Google Scholar
     

  • Akimov, I., Andrews, J. & Henneberger, F. Stimulated emission from the biexciton in a single self-assembled ii-vi quantum dot. Phys. Rev. Lett. 96, 067401 (2006).

    ADS 

    Google Scholar
     

  • Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).

    ADS 

    Google Scholar
     

  • Thomas, S., Malacarne, A., Fresi, F., Poti, L. & Azana, J. Fiber-based programmable picosecond optical pulse shaper. J. Light. Technol. 28, 1832–1843 (2010).

    ADS 

    Google Scholar
     

  • Monmayrant, A., Weber, S. & Chatel, B. A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B. 43, 103001 (2010).

    ADS 

    Google Scholar
     

  • Kappe, F. et al. Collective excitation of spatio-spectrally distinct quantum dots enabled by chirped pulses. Mater. Quantum Technol. 3, 025006 (2023).

    ADS 

    Google Scholar
     

  • Undeutsch, G. et al. Electric-field control of photon indistinguishability in cascaded decays in quantum dots. Nano Lett. 25, 7121–7127 (2025).


    Google Scholar
     

  • Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled in (ga) as/(al) gaAs quantum dots. Phys. Rev. B. 65, 195315 (2002).

    ADS 

    Google Scholar
     

  • Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. N. J. Phys. 20, 115003 (2018).


    Google Scholar
     

  • Rickert, L. et al. A fiber-pigtailed quantum dot device generating indistinguishable photons at GHz clock-rates. Nanophotonics 14, 1795 (2025).

  • Ostapenko, H., Mitchell, T., Castro-Marin, P. & Reid, D. T. Three-element, self-starting kerr-lens-modelocked 1-ghz ti: sapphire oscillator pumped by a single laser diode. Opt. Express 30, 39624–39630 (2022).

    ADS 

    Google Scholar
     

  • Yang, J. et al. Titanium: sapphire-on-insulator integrated lasers and amplifiers. Nature 630, 853–859 (2024).


    Google Scholar
     

  • Schlehahn, A. et al. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser. Appl. Phys. Lett. 107, 041105 (2015).

    ADS 

    Google Scholar
     

  • Mangold, M. et al. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Opt. Express 22, 6099 (2014).

    ADS 

    Google Scholar
     

  • Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).


    Google Scholar
     

  • Northeast, D. B. et al. Optical fibre-based single photon source using InAsP quantum dot nanowires and gradient-index lens collection. Sci. Rep. 11, 22878 (2021).

    ADS 

    Google Scholar
     

  • Covre da Silva, S. F. et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources. Appl. Phys. Lett. 119, 120502 (2021).


    Google Scholar