• Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scr. 2009, 014001 (2009).


    Google Scholar
     

  • Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    ADS 

    Google Scholar
     

  • Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).


    Google Scholar
     

  • Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    ADS 

    Google Scholar
     

  • de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    ADS 

    Google Scholar
     

  • Galliou, S. et al. Extremely low loss phonon-trapping cryogenic acoustic cavities for future physical experiments. Sci. Rep. 3, 2132 (2013).


    Google Scholar
     

  • Engelsen, N. J., Beccari, A. & Kippenberg, T. J. Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution. Nat. Nanotechnol. 19, 725–737 (2024).


    Google Scholar
     

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    ADS 

    Google Scholar
     

  • Samanta, C. et al. Nonlinear nanomechanical resonators approaching the quantum ground state. Nat. Phys. 19, 1340–1344 (2023).


    Google Scholar
     

  • Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).

    ADS 

    Google Scholar
     

  • Hann, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).

    ADS 

    Google Scholar
     

  • Pechal, M., Arrangoiz-Arriola, P. & Safavi-Naeini, A. H. Superconducting circuit quantum computing with nanomechanical resonators as storage. Quantum Sci. Technol. 4, 015006 (2018).

    ADS 

    Google Scholar
     

  • Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).

    ADS 

    Google Scholar
     

  • Pirkkalainen, J.-M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    ADS 

    Google Scholar
     

  • Ma, X., Viennot, J. J., Kotler, S., Teufel, J. D. & Lehnert, K. W. Non-classical energy squeezing of a macroscopic mechanical oscillator. Nat. Phys. 17, 322–326 (2021).


    Google Scholar
     

  • LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    ADS 

    Google Scholar
     

  • Rouxinol, F. et al. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system. Nanotechnology 27, 364003 (2016).


    Google Scholar
     

  • O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    ADS 

    Google Scholar
     

  • Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

    ADS 

    Google Scholar
     

  • Bild, M. et al. Schrödinger cat states of a 16-microgram mechanical oscillator. Science 380, 274–278 (2023).

    ADS 

    Google Scholar
     

  • Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

    ADS 

    Google Scholar
     

  • Crowley, K. D. et al. Disentangling losses in tantalum superconducting circuits. Phys. Rev. X 13, 041005 (2023).


    Google Scholar
     

  • Tuokkola, M. et al. Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit. Preprint at https://arxiv.org/abs/2407.18778 (2024).

  • McGuigan, D. F. et al. Measurements of the mechanical Q of single-crystal silicon at low temperatures. J. Low Temp. Phys. 30, 621–629 (1978).

    ADS 

    Google Scholar
     

  • Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).


    Google Scholar
     

  • Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014).

    ADS 

    Google Scholar
     

  • Liu, Y. et al. Degeneracy-breaking and long-lived microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals. Nat. Commun. 16, 1207 (2025).


    Google Scholar
     

  • Behunin, R. O., Intravaia, F. & Rakich, P. T. Dimensional transformation of defect-induced noise, dissipation, and nonlinearity. Phys. Rev. B 93, 224110 (2016).

    ADS 

    Google Scholar
     

  • Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).


    Google Scholar
     

  • McCormick, K. C. et al. Quantum-enhanced sensing of a single-ion mechanical oscillator. Nature 572, 86–90 (2019).

    ADS 

    Google Scholar
     

  • Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022).


    Google Scholar
     

  • Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326–1332 (2023).


    Google Scholar
     

  • Wollack, E. A. et al. Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature. Appl. Phys. Lett. 118, 123501 (2021).

    ADS 

    Google Scholar
     

  • Mason, W. P. & McSkimin, H. J. Attenuation and scattering of high frequency sound waves in metals and glasses. J. Acoust. Soc. Am. 19, 464–473 (1947).

    ADS 

    Google Scholar
     

  • Catto, G. et al. Microwave response of a metallic superconductor subject to a high-voltage gate electrode. Sci. Rep. 12, 6822 (2022).

    ADS 

    Google Scholar
     

  • Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501 (2013).

    ADS 

    Google Scholar
     

  • Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    ADS 

    Google Scholar
     

  • Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

    ADS 

    Google Scholar
     

  • Yang, Y. et al. A mechanical qubit. Science 386, 783–788 (2024).

    MathSciNet 

    Google Scholar
     

  • Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    ADS 

    Google Scholar
     

  • Cleland, A. Y., Wollack, E. A. & Safavi-Naeini, A. H. Studying phonon coherence with a quantum sensor. Nat. Commun. 15, 4979 (2024).

    ADS 

    Google Scholar
     

  • Emser, A. L., Metzger, C., Rose, B. C. & Lehnert, K. W. Thin-film quartz for high-coherence piezoelectric phononic crystal resonators. Phys. Rev. Appl. 22, 064032 (2024).


    Google Scholar
     

  • Kleiman, R. N., Agnolet, G. & Bishop, D. J. Two-level systems observed in the mechanical properties of single-crystal silicon at low temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987).

    ADS 

    Google Scholar
     

  • von Lüpke, U. et al. Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics. Nat. Phys. 18, 794–799 (2022).


    Google Scholar
     

  • Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).


    Google Scholar
     

  • Lisenfeld, J. et al. Electric field spectroscopy of material defects in transmon qubits. npj Quantum Inf 5, 105 (2019).

    ADS 

    Google Scholar
     

  • Sarabi, B., Ramanayaka, A. N., Burin, A. L., Wellstood, F. C. & Osborn, K. D. Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics. Phys. Rev. Lett. 116, 167002 (2016).

    ADS 

    Google Scholar
     

  • Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987).

    ADS 

    Google Scholar
     

  • Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630 (1954).

    ADS 

    Google Scholar
     

  • Arenz, C., Burgarth, D. & Hillier, R. Dynamical decoupling and homogenization of continuous variable systems. J. Phys. A 50, 135303 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    ADS 

    Google Scholar
     

  • Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).


    Google Scholar
     

  • Chakram, S. et al. Multimode photon blockade. Nat. Phys. 18, 879–884 (2022).


    Google Scholar
     

  • Jones, W. M., Lukin, D. & Scherer, A. Practical nanoscale field emission devices for integrated circuits. Appl. Phys. Lett. 110, 263101 (2017).

    ADS 

    Google Scholar
     

  • Najera-Santos, B.-L. et al. High-sensitivity ac-charge detection with a MHz-frequency fluxonium qubit. Phys. Rev. X 14, 011007 (2024).


    Google Scholar
     

  • Lee, N. R. et al. Strong dispersive coupling between a mechanical resonator and a fluxonium superconducting qubit. PRX Quantum 4, 040342 (2023).

    ADS 

    Google Scholar
     

  • Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf 3, 42 (2017).

    ADS 

    Google Scholar
     

  • Conner, C. R. et al. Superconducting qubits in a flip-chip architecture. Appl. Phys. Lett. 118, 232602 (2021).

    ADS 

    Google Scholar
     

  • Guillaud, J. & Mirrahimi, M. Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019).


    Google Scholar
     

  • Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018).

    ADS 

    Google Scholar
     

  • Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    ADS 

    Google Scholar
     

  • Sank, D. et al. System characterization of dispersive readout in superconducting qubits. Phys. Rev. Appl. 23, 024055 (2025).


    Google Scholar
     

  • Zhang, Y. et al. Engineering bilinear mode coupling in circuit QED: theory and experiment. Phys. Rev. A 99, 012314 (2019).

    ADS 

    Google Scholar
     

  • Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017).

    ADS 

    Google Scholar
     

  • Card, H. Aluminum–silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electron Devices 23, 538–544 (1976).

    ADS 

    Google Scholar
     

  • Bozkurt, A. B., Golami, O., Yu, Y., Tian, H. & Mirhosseini, M. Data for the article entitled: ‘A mechanical quantum memory for microwave photons’. Zenodo https://doi.org/10.5281/zenodo.15069397 (2025).