• Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).


    Google Scholar
     

  • Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).

    ADS 

    Google Scholar
     

  • Ku, M. J. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    ADS 

    Google Scholar
     

  • Bandurin, D. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS 

    Google Scholar
     

  • Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).


    Google Scholar
     

  • Son, D. Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction. Phys. Rev. B 75, 235423 (2007).

    ADS 

    Google Scholar
     

  • Hartnoll, S. A., Kovtun, P. K., Müller, M. & Sachdev, S. Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes. Phys. Rev. B 76, 144502 (2007).

    ADS 

    Google Scholar
     

  • Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum critical transport in clean graphene. Phys. Rev. B 78, 085416 (2008).

    ADS 

    Google Scholar
     

  • Lucas, A., Crossno, J., Fong, K. C., Kim, P. & Sachdev, S. Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene. Phys. Rev. B 93, 075426 (2016).

    ADS 

    Google Scholar
     

  • Xie, H. Y. & Foster, M. S. Transport coefficients of graphene: interplay of impurity scattering, Coulomb interaction, and optical phonons. Phys. Rev. B 93, 195103 (2016).

    ADS 

    Google Scholar
     

  • Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys.: Cond. Mat. 30, 053001 (2018).

    ADS 

    Google Scholar
     

  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

    ADS 

    Google Scholar
     

  • Ghahari, F. et al. Enhanced thermoelectric power in graphene: violation of the Mott relation by inelastic scattering. Phys. Rev. Lett. 116, 136802 (2016).

    ADS 

    Google Scholar
     

  • Xin, N. et al. Giant magnetoresistance of Dirac plasma in high-mobility graphene. Nature 616, 270–274 (2023).

    ADS 

    Google Scholar
     

  • Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Block, A. et al. Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195–1200 (2021).

    ADS 

    Google Scholar
     

  • Adam, S., Hwang, E., Galitski, V. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    ADS 

    Google Scholar
     

  • Tu, Y.-T. & Sarma, S. D. Wiedemann-Franz law in graphene. Phys. Rev. B 107, 085401 (2023).

    ADS 

    Google Scholar
     

  • Ponomarenko, L. A. et al. Extreme electron–hole drag and negative mobility in the Dirac plasma of graphene. Nat. Commun. 15, 9869 (2024).


    Google Scholar
     

  • Kumar, C. et al. Imaging hydrodynamic electrons flowing without Landauer-Sharvin resistance. Nature 609, 276–281 (2022).

    ADS 

    Google Scholar
     

  • Müller, M., Fritz, L. & Sachdev, S. Quantum-critical relativistic magnetotransport in graphene. Phys. Rev. B 78, 115406 (2008).

    ADS 

    Google Scholar
     

  • Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    ADS 

    Google Scholar
     

  • Li, S., Andreev, A. & Levchenko, A. Hydrodynamic electron transport in graphene Hall-bar devices. Phys. Rev. B 105, 155307 (2022).

    ADS 

    Google Scholar
     

  • Huang, W. et al. Electronic Poiseuille flow in hexagonal boron nitride encapsulated graphene field effect transistors. Phys. Rev. Res. 5, 023075 (2023).


    Google Scholar
     

  • Pellegrino, F. M., Torre, I., Geim, A. K. & Polini, M. Electron hydrodynamics dilemma: whirlpools or no whirlpools. Phys. Rev. B 94, 155414 (2016).

    ADS 

    Google Scholar
     

  • Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    ADS 

    Google Scholar
     

  • Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    ADS 

    Google Scholar
     

  • Fong, K. C. et al. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).


    Google Scholar
     

  • Yudhistira, I., Afrose, R. & Adam, S. Non-monotonic temperature dependence of electron viscosity and crossover to high-temperature universal viscous fluid in monolayer and bilayer graphene. Phys. Rev. B 111, 085433 (2025).


    Google Scholar
     

  • Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714 (1997).

    ADS 

    Google Scholar
     

  • Fisher, M. P., Grinstein, G. & Girvin, S. Presence of quantum diffusion in two dimensions: universal resistance at the superconductor-insulator transition. Phys. Rev. Lett. 64, 587 (1990).

    ADS 

    Google Scholar
     

  • Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

    ADS 

    Google Scholar
     

  • Kovtun, P. K., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).

    ADS 

    Google Scholar
     

  • Chen, W. & Zhu, W. Viscosity of disordered Dirac electrons. Phys. Rev. B 106, 014205 (2022).

    ADS 

    Google Scholar