• Osborne, T. B., Mendel, L. B. & Ferry, E. L. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294–295 (1917).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J. Nutr. 10, 63–79 (1935).

    Article 
    CAS 

    Google Scholar
     

  • Speakman, J. R., Mitchell, S. E. & Mazidi, M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp. Gerontol. 86, 28–38 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanley, D. P. & Kirkwood, T. B. Calorie restriction and aging: a life-history analysis. Evolution 54, 740–750 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Weindruch, R., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116, 641–654 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perkins, S. N., Hursting, S. D., Phang, J. M. & Haines, D. C. Calorie restriction reduces ulcerative dermatitis and infection-related mortality in p53-deficient and wild-type mice. J. Invest. Dermatol. 111, 292–296 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colman, R. J. et al. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 5, 3557 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pinney, D. O., Stephens, D. F. & Pope, L. S. Lifetime effects of winter supplemental feed level and age at first parturition on range beef cows. J. Anim. Sci. 34, 1067–1074 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawler, D. F. et al. Diet restriction and ageing in the dog: major observations over two decades. Br. J. Nutr. 99, 793–805 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCay, C., Maynard, L., Sperling, G. & Barnes, L. L. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. Nutr. Rev. 33, 241–243 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagherniya, M., Butler, A. E., Barreto, G. E. & Sahebkar, A. The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Res. Rev. 47, 183–197 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fontana, L., Nehme, J. & Demaria, M. Caloric restriction and cellular senescence. Mech. Ageing Dev. 176, 19–23 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radler, M. E., Wright, B. J., Walker, F. R., Hale, M. W. & Kent, S. Calorie restriction increases lipopolysaccharide-induced neuropeptide Y immunolabeling and reduces microglial cell area in the arcuate hypothalamic nucleus. Neuroscience 285, 236–247 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, C. Y., Park, S., Kim, M. S., Kim, H. K. & Han, S. N. Effects of mild calorie restriction on lipid metabolism and inflammation in liver and adipose tissue. Biochem. Biophys. Res. Commun. 490, 636–642 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: an update. Ageing Res. Rev. 39, 36–45 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cooper, T. M., Mockett, R. J., Sohal, B. H., Sohal, R. S. & Orr, W. C. Effect of caloric restriction on life span of the housefly, Musca domestica. FASEB J. 18, 1591–1593 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mockett, R. J., Cooper, T. M., Orr, W. C. & Sohal, R. S. Effects of caloric restriction are species-specific. Biogerontology 7, 157–160 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, C. Y., Rikke, B. A., Johnson, T. E., Diaz, V. & Nelson, J. F. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9, 92–95 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forster, M. J., Morris, P. & Sohal, R. S. Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J. 17, 690–692 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Asp. Med. 32, 159–221 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Di Francesco, A. et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634, 684–692 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span-from yeast to humans. Science 328, 321–326 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green, C. L. et al. The effects of graded levels of calorie restriction: XVI. Metabolomic changes in the cerebellum indicate activation of hypothalamocerebellar connections driven by hunger responses. J. Gerontol. A Biol. Sci. Med. Sci. 76, 601–610 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dirks, A. J. & Leeuwenburgh, C. Caloric restriction in humans: potential pitfalls and health concerns. Mech. Ageing Dev. 127, 1–7 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, S. & Dipietro, L. A. Factors affecting wound healing. J. Dent. Res. 89, 219–229 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosain, A. & DiPietro, L. A. Aging and wound healing. World J. Surg. 28, 321–326 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Swift, M. E., Burns, A. L., Gray, K. L. & DiPietro, L. A. Age-related alterations in the inflammatory response to dermal injury. J. Invest. Dermatol. 117, 1027–1035 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swift, M. E., Kleinman, H. K. & DiPietro, L. A. Impaired wound repair and delayed angiogenesis in aged mice. Lab. Invest. 79, 1479–1487 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Barchitta, M. et al. Nutrition and wound healing: an overview focusing on the beneficial effects of curcumin. Int. J. Mol. Sci. 20, 1119 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiser, K., McGee, C., Rucker, R. & McDonald, R. Effects of aging and caloric restriction on extracellular matrix biosynthesis in a model of injury repair in rats. J. Gerontol. A Biol. Sci. Med. Sci. 50a, B40–B47 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, D. E. & Archer, J. R. Genetic differences in effects of food restriction on aging in mice. J. Nutr. 117, 376–382 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reed, M. J. et al. Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mech. Ageing Dev. 89, 21–43 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunt, N. D. et al. Effect of calorie restriction and refeeding on skin wound healing in the rat. Age 34, 1453–1458 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wolf, N. S. in The Comparative Biology of Aging (ed. Wolf, N. S.) 97–122 (Springer, 2009).

  • Hsieh, E. A., Chai, C. M. & Hellerstein, M. K. Effects of caloric restriction on cell proliferation in several tissues in mice: role of intermittent feeding. Am. J. Physiol. Endocrinol. Metab. 288, E965–E972 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwamura, H. et al. Caloric restriction reduces basal cell proliferation and results in the deterioration of neuroepithelial regeneration following olfactotoxic mucosal damage in mouse olfactory mucosa. Cell Tissue Res. 378, 175–193 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, G. S. et al. Effect of age and caloric restriction on cutaneous wound closure in rats and monkeys. J. Gerontol. A Biol. Sci. Med. Sci. 52, B98–B102 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weindruch, R. H., Kristie, J. A., Cheney, K. E. & Walford, R. L. Influence of controlled dietary restriction on immunologic function and aging. Fed. Proc. 38, 2007–2016 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Carrillo, A. E. & Flouris, A. D. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res. Rev. 10, 153–162 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Lane, M. A. et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Natl Acad. Sci. USA 93, 4159–4164 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, S. E. et al. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse. Oncotarget 6, 18314–18337 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forsum, E., Hillman, P. E. & Nesheim, M. C. Effect of energy restriction on total heat production, basal metabolic rate, and specific dynamic action of food in rats. J. Nutr. 111, 1691–1697 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hambly, C. & Speakman, J. R. Contribution of different mechanisms to compensation for energy restriction in the mouse. Obes. Res. 13, 1548–1557 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rikke, B. A. et al. Strain variation in the response of body temperature to dietary restriction. Mech. Ageing Dev. 124, 663–678 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Turturro, A. & Hart, R. W. Longevity-assurance mechanisms and caloric restriction. Ann. N. Y. Acad. Sci. 621, 363–372 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunter, W. S., Croson, W. B., Bartke, A., Gentry, M. V. & Meliska, C. J. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol. Behav. 67, 433–437 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat. Metab. 4, 320–326 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauck, S. J., Hunter, W. S., Danilovich, N., Kopchick, J. J. & Bartke, A. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp. Biol. Med. 226, 552–558 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Cintron-Colon, R., Shankar, K., Sanchez-Alavez, M. & Conti, B. Gonadal hormones influence core body temperature during calorie restriction. Temperature 6, 158–168 (2019).

    Article 

    Google Scholar
     

  • Johnstone, A. M., Murison, S. D., Duncan, J. S., Rance, K. A. & Speakman, J. R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 82, 941–948 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, G. S. et al. Effects of dietary caloric restriction and aging on thyroid hormones of rhesus monkeys. Horm. Metab. Res. 34, 378–382 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fontana, L., Klein, S., Holloszy, J. O. & Premachandra, B. N. Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones. J. Clin. Endocrinol. Metab. 91, 3232–3235 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cintron-Colon, R. et al. Activation of kappa opioid receptor regulates the hypothermic response to calorie restriction and limits body weight loss. Curr. Biol. 29, 4291–4299 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, Y. et al. Differential responses of white adipose tissue and brown adipose tissue to calorie restriction during aging. J. Gerontol. A Biol. Sci. Med. Sci. 76, 393–399 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selman, C. et al. Energy expenditure of calorically restricted rats is higher than predicted from their altered body composition. Mech. Ageing Dev. 126, 783–793 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Duffy, P. H., Feuers, R. J. & Hart, R. W. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol. Int. 7, 291–303 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hebebrand, J. et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol. Behav. 79, 25–37 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy, P. H., Feuers, R., Nakamura, K. D., Leakey, J. & Hart, R. W. Effect of chronic caloric restriction on the synchronization of various physiological measures in old female Fischer 344 rats. Chronobiol. Int. 7, 113–124 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahima, R. S. & Antwi, D. A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. North Am. 37, 811–823 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Myers, M. G. Jr. & Olson, D. P. Central nervous system control of metabolism. Nature 491, 357–363 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohn, J. W. Network of hypothalamic neurons that control appetite. BMB Rep. 48, 229–233 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruning, J. C. & Fenselau, H. Integrative neurocircuits that control metabolism and food intake. Science 381, eabl7398 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • De Solis, A. J. et al. Reciprocal activity of AgRP and POMC neurons governs coordinated control of feeding and metabolism. Nat. Metab. 6, 473–493 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenselau, H. et al. A rapidly acting glutamatergic ARC->PVH satiety circuit postsynaptically regulated by alpha-MSH. Nat. Neurosci. 20, 42–51 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hambly, C., Mercer, J. G. & Speakman, J. R. Hunger does not diminish over time in mice under protracted caloric restriction. Rejuvenation Res. 10, 533–542 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Derous, D. et al. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging 8, 642–663 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maclean, P. S., Bergouignan, A., Cornier, M. A. & Jackman, M. R. Biology’s response to dieting: the impetus for weight regain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R581–R600 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polidori, D., Sanghvi, A., Seeley, R. J. & Hall, K. D. How strongly does appetite counter weight loss? Quantification of the feedback control of human energy intake. Obesity 24, 2289–2295 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorling, J. L. et al. Change in self-efficacy, eating behaviors and food cravings during two years of calorie restriction in humans without obesity. Appetite 143, 104397 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahathuduwa, C. N., Binks, M., Martin, C. K. & Dawson, J. A. Extended calorie restriction suppresses overall and specific food cravings: a systematic review and a meta-analysis. Obes. Rev. 18, 1122–1135 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraus, W. E. et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 7, 673–683 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, T. H. & Ables, G. P. Dietary restrictions, bone density, and bone quality. Ann. N. Y. Acad. Sci. 1363, 26–39 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devlin, M. J. et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Min. Res. 25, 2078–2088 (2010).

    Article 

    Google Scholar
     

  • Bartell, S. M. et al. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J. Bone Min. Res. 26, 1710–1720 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Reid, I. R., Baldock, P. A. & Cornish, J. Effects of leptin on the skeleton. Endocr. Rev. 39, 938–959 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, R. T. et al. Peripheral leptin regulates bone formation. J. Bone Min. Res. 28, 22–34 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Baek, K., Barlow, A. A., Allen, M. R. & Bloomfield, S. A. Food restriction and simulated microgravity: effects on bone and serum leptin. J. Appl. Physiol. 104, 1086–1093 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, S. E. et al. The effects of graded levels of calorie restriction: I. Impact of short term calorie and protein restriction on body composition in the C57BL/6 mouse. Oncotarget 6, 15902–15930 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banu, J., Orhii, P. B., Okafor, M. C., Wang, L. & Kalu, D. N. Analysis of the effects of growth hormone, exercise and food restriction on cancellous bone in different bone sites in middle-aged female rats. Mech. Ageing Dev. 122, 849–864 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maier, G. W. & Kreis, M. E. Limited nutritional energy supply differentially impairs growth and bone mineralization of the developing lumbar vertebrae in minipigs. Bone 36, 512–520 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Soltani, S., Hunter, G. R., Kazemi, A. & Shab-Bidar, S. The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials. Osteoporos. Int. 27, 2655–2671 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veronese, N. & Reginster, J. Y. The effects of calorie restriction, intermittent fasting and vegetarian diets on bone health. Aging Clin. Exp. Res. 31, 753–758 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Villareal, D. T. et al. Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J. Bone Min. Res. 31, 40–51 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Villareal, D. T. et al. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch. Intern. Med. 166, 2502–2510 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Villareal, D. T. et al. Reduced bone mineral density is not associated with significantly reduced bone quality in men and women practicing long-term calorie restriction with adequate nutrition. Aging Cell 10, 96–102 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colman, R. J., Beasley, T. M., Allison, D. B. & Weindruch, R. Skeletal effects of long-term caloric restriction in rhesus monkeys. Age 34, 1133–1143 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawkins, J., Cifuentes, M., Pleshko, N. L., Ambia-Sobhan, H. & Shapses, S. A. Energy restriction is associated with lower bone mineral density of the tibia and femur in lean but not obese female rats. J. Nutr. 140, 31–37 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalu, D. N. et al. Lifelong food restriction prevents senile osteopenia and hyperparathyroidism in F344 rats. Mech. Ageing Dev. 26, 103–112 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westerbeek, Z. W., Hepple, R. T. & Zernicke, R. F. Effects of aging and caloric restriction on bone structure and mechanical properties. J. Gerontol. A Biol. Sci. Med. Sci. 63, 1131–1136 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Pifferi, F. et al. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun. Biol. 1, 30 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupien, S. J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1, 69–73 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, N. V. & Finch, C. E. The glucocorticoid paradox of caloric restriction in slowing brain aging. Neurobiol. Aging 23, 707–717 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramos-Cabrer, P. et al. Reversible reduction in brain myelin content upon marathon running. Nat. Metab. https://doi.org/10.1038/s42255-025-01244-7 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Hedden, T. & Gabrieli, J. D. Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5, 87–96 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picq, J. L., Aujard, F., Volk, A. & Dhenain, M. Age-related cerebral atrophy in nonhuman primates predicts cognitive impairments. Neurobiol. Aging 33, 1096–1109 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bond, N. W., Everitt, A. V. & Walton, J. Effects of dietary restriction on radial-arm maze performance and flavor memory in aged rats. Neurobiol. Aging 10, 27–30 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, B., Mattson, M. P. & Maudsley, S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res. Rev. 5, 332–353 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellush, L. L., Wright, A. M., Walker, J. P., Kopchick, J. & Colvin, R. A. Caloric restriction and spatial learning in old mice. Physiol. Behav. 60, 541–547 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitsikas, N., Carli, M., Fidecka, S. & Algeri, S. Effect of life-long hypocaloric diet on age-related changes in motor and cognitive behavior in a rat population. Neurobiol. Aging 11, 417–423 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markowska, A. L. & Savonenko, A. Retardation of cognitive aging by life-long diet restriction: implications for genetic variance. Neurobiol. Aging 23, 75–86 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Markowska, A. L. Life-long diet restriction failed to retard cognitive aging in Fischer-344 rats. Neurobiol. Aging 20, 177–189 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarker, M. R. et al. Curcumin mimics the neurocognitive and anti-inflammatory effects of caloric restriction in a mouse model of midlife obesity. PLoS One 10, e0140431 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanai, S., Okaichi, Y. & Okaichi, H. Long-term dietary restriction causes negative effects on cognitive functions in rats. Neurobiol. Aging 25, 325–332 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Padamsey, Z., Katsanevaki, D., Dupuy, N. & Rochefort, N. L. Neocortex saves energy by reducing coding precision during food scarcity. Neuron 110, 280–296 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan, J. F. Eating disorders and reproduction. Aust. N. Z. J. Obstet. Gynaecol. 39, 167–173 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgan, J. F., Lacey, J. H. & Reid, F. Anorexia nervosa: changes in sexuality during weight restoration. Psychosom. Med. 61, 541–545 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, S. L. et al. Having it all: historical energy intakes do not generate the anticipated trade-offs in fecundity. Proc. Biol. Sci. 273, 1369–1374 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selesniemi, K., Lee, H. J. & Tilly, J. L. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7, 622–629 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isola, J. V. V. et al. Mild calorie restriction, but not 17α-estradiol, extends ovarian reserve and fertility in female mice. Exp. Gerontol. 159, 111669 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mossa, F. et al. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol. Reprod. 88, 92 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Harrath, A. H., Alrezaki, A., Mansour, L., Alwasel, S. H. & Palomba, S. Food restriction during pregnancy and female offspring fertility: adverse effects of reprogrammed reproductive lifespan. J. Ovarian Res. 10, 77 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanini, B. M. et al. Calorie restriction during gestation affects ovarian reserve in offspring in the mouse. Reprod. Fertil. Dev. 32, 1338–1349 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. K. et al. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults: the CALERIE 2 randomized clinical trial. JAMA Intern. Med. 176, 743–752 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Effros, R. B., Walford, R. L., Weindruch, R. & Mitcheltree, C. Influences of dietary restriction on immunity to influenza in aged mice. J. Gerontol. 46, B142–B147 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peck, M. D., Babcock, G. F. & Alexander, J. W. The role of protein and calorie restriction in outcome from Salmonella infection in mice. J. Parenter. Enter. Nutr. 16, 561–565 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Hasegawa, A. et al. Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. J. Surg. Res. 174, 136–141 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacDonald, L., Radler, M., Paolini, A. G. & Kent, S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R172–R184 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spadaro, O. et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671–677 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritz, B. W., Aktan, I., Nogusa, S. & Gardner, E. M. Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J. Nutr. 138, 2269–2275 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, E. M., Beli, E., Clinthorne, J. F. & Duriancik, D. M. Energy intake and response to infection with influenza. Annu. Rev. Nutr. 31, 353–367 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clinthorne, J. F., Beli, E., Duriancik, D. M. & Gardner, E. M. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. J. Immunol. 190, 712–722 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardner, E. M. Caloric restriction decreases survival of aged mice in response to primary influenza infection. J. Gerontol. A Biol. Sci. Med. Sci. 60, 688–694 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ikeda, S. et al. Dietary restriction impairs neutrophil exudation by reducing CD11b/CD18 expression and chemokine production. Arch. Surg. 136, 297–304 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clinthorne, J. F., Adams, D. J., Fenton, J. I., Ritz, B. W. & Gardner, E. M. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J. Nutr. 140, 1495–1501 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, H. N., Scott, M. E., Stevenson, M. M. & Koski, K. G. Energy restriction and zinc deficiency impair the functions of murine T cells and antigen-presenting cells during gastrointestinal nematode infection. J. Nutr. 128, 20–27 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, D., Muthukumar, A. R., Lawrence, R. A. & Fernandes, G. Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin. Diagn. Lab. Immunol. 8, 1003–1011 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristan, D. M. Chronic calorie restriction increases susceptibility of laboratory mice (Mus musculus) to a primary intestinal parasite infection. Aging Cell 6, 817–825 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar