Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol 5, 782–791 (2007).
Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol 2, 17058 (2017).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Grossart, H. P. et al. Fungi in aquatic ecosystems. Nat. Rev. Microbiol 17, 339–354 (2019).
Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Richards, T. A., Jones, M. D., Leonard, G. & Bass, D. Marine fungi: Their ecology and molecular diversity. Ann. Rev. Mar. Sci. 4, 495–522 (2012).
Baltar, F., Zhao, Z. & Herndl, G. J. Potential and expression of carbohydrate utilization by marine fungi in the global ocean. Microbiome 9, 106 (2021).
Breyer, E., Zhao, Z., Herndl, G. J. & Baltar, F. Global contribution of pelagic fungi to protein degradation in the ocean. Microbiome 10, 143 (2022).
Breyer, E. & Baltar, F. The largely neglected ecological role of oceanic pelagic fungi. Trends Ecol. Evol. 38, 870–888 (2023).
Debeljak, P. & Baltar, F. Fungal diversity and community composition across ecosystems. J. Fungi 9, 510 (2023).
Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLOS ONE 8, e56335 (2013).
Orsi, W. D., Edgcomb, V. P., Christman, G. D. & Biddle, J. F. Gene expression in the deep biosphere. Nature 499, 205–208 (2013).
Orsi, W. D. et al. Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis. ISME J. 16, 1245–1261 (2022).
Solanki, V. et al. Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi. ISME J. 16, 1818–1830 (2022).
Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).
Sen, K., Bai, M., Sen, B. & Wang, G. Disentangling the structure and function of mycoplankton communities in the context of marine environmental heterogeneity. Sci. Total Environ. 766, 142635 (2021).
Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).
Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083e1021. (2019).
Endo, H. et al. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat. Ecol. Evol. 4, 1639–1649 (2020).
Kharbush, J. J. et al. Particulate organic carbon deconstructed: Molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).
Cerro-Gálvez, E. et al. Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters. Environ. Microbiol 21, 1466–1481 (2019).
Zhao, Z., Amano, C., Reinthaler, T., Orellana, M. V. & Herndl, G. J. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. Sci. Adv. 10, eadn5143 (2024).
Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, eaaz4354 (2020).
Wang, F.-Q. et al. Particle-attached bacteria act as gatekeepers in the decomposition of complex phytoplankton polysaccharides. Microbiome 12, 32 (2024).
Comstock, J. et al. Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles. ISME Commun. 4, 1 (2024).
Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).
Kellogg, C. T. E. & Deming, J. W. Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean. FEMS Microbiol. Ecol. 89, 360–375 (2014).
Yin, Q., He, K., Collins, G., De Vrieze, J. & Wu, G. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean. Water 7, 52 (2024).
Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).
Chen, P. et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).
Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol 18, 2001–2009 (2016).
Hassett, B. T. et al. Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME J. 13, 1484–1496 (2019).
Terrado, R. et al. Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol. 34, 1901–1914 (2011).
Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).
Zhao, Z., Baltar, F. & Herndl Gerhard, J. Decoupling between the genetic potential and the metabolic regulation and expression in microbial organic matter cleavage across microbiomes. Microbiol Spectr. 0, e03036–03023 (2024).
Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Ann. Rev. Mar. Sci. 3, 401–425 (2011).
Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11, 362–373 (2016).
Orsi, W. D., Richards, T. A. & Francis, W. R. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol 3, 32–37 (2018).
Sen, K. Sen, B. & Wang, G. Diversity, abundance, and ecological roles of planktonic fungi in marine environments. J. Fungi (Basel) 8, 491 (2022).
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).
Salazar-Alekseyeva, K., Herndl, G. J. & Baltar, F. Release of cell-free enzymes by marine pelagic fungal strains. Front Fungal Biol. 4, 1209265 (2023).
Barrett, K., Jensen, K., Meyer, A. S., Frisvad, J. C. & Lange, L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Sci. Rep. 10, 5158 (2020).
Chrismas, N. & Cunliffe, M. Depth-dependent mycoplankton glycoside hydrolase gene activity in the open ocean—evidence from the Tara Oceans eukaryote metatranscriptomes. ISME J. 14, 2361–2365 (2020).
Kasana, R. C. Proteases from psychrotrophs: An overview. Crit. Rev. Microbiol. 36, 134–145 (2010).
Bruno, S., Coppola, D., di Prisco, G., Giordano, D. & Verde, C. Enzymes from marine polar regions and their biotechnological applications. Mar. Drugs 17, 544 (2019).
Sturluson, M., Gissel Nielsen, T. & Wassmann, P. Bacterial abundance, biomass and production during spring blooms in the northern Barents Sea. Deep Sea Res. Part II: Top. Stud. Oceanogr. 55, 2186–2198 (2008).
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105, 7774–7778 (2008).
Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. PNAS 110, 2342–2347 (2013).
Abdel-Sater, F., El Bakkoury, M., Urrestarazu, A., Vissers, S. & André, B. Amino acid signaling in yeast: Casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol. Cell. Biol. 24, 9771–9785 (2004).
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 e1021 (2019).
Morales, S. E., Biswas, A., Herndl, G. J. & Baltar, F. Global structuring of phylogenetic and functional diversity of pelagic fungi by depth and temperature. Front Mar. Sci. 6, 131 (2019).
Cunliffe, M., Hollingsworth, A., Bain, C., Sharma, V. & Taylor, J. D. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 30, 135–138 (2017).
Alekseyeva, K. S., Herndl, G. J. & Baltar F. Extracellular enzymatic activities of oceanic pelagic fungal strains and the influence of temperature. J. Fungi (Basel) 8, 571 (2022).
Trejos-Espeleta, J. C. et al. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proc. Natl. Acad. Sci. 121, e2402689121 (2024).
Wang, Y., Sen, K., He, Y., Xie, Y. & Wang, G. Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status. Sci. Total Environ. 683, 822–833 (2019).
Gow Neil AR, Latge J-P, Munro Carol A. The fungal cell wall: StrUcture, Biosynthesis, And Function. Microbiol. Spectrum 5, https://doi.org/10.1128/microbiolspec.funk-0035-2016 (2017).
Raghukumar, S. Fungi in Coastal and Oceanic Marine Ecosystems, (2017).
Amend, A. et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio. 10, https://doi.org/10.1128/mbio.01189-01118 (2019).
Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol 18, 1646–1653 (2016).
Marchetta, A. et al. A deep insight into the diversity of microfungal communities in Arctic and Antarctic Lakes. J. Fungi 9, 1095 (2023).
Freeman, K. R. et al. Evidence that chytrids dominate fungal communities in high-elevation soils. PNAS 106, 18315–18320 (2009).
Schmidt, S. K., Naff, C. S. & Lynch, R. C. Fungal communities at the edge: Ecological lessons from high alpine fungi. Fungal Ecol. 5, 443–452 (2012).
Triadó-Margarit, X. & Casamayor, E. O. Genetic diversity of planktonic eukaryotes in high mountain lakes (Central Pyrenees, Spain). Environ. Microbiol 14, 2445–2456 (2012).
Kagami, M., Miki, T. & Takimoto, G. Mycoloop: chytrids in aquatic food webs. Front microbiol 5, 166 (2014).
Proceedings of 3rd International Conference on Document Analysis and Recognition. In: Proceedings of 3rd International Conference on Document Analysis and Recognition) (1995).
Muszewska, A. et al. Fungal lifestyle reflected in serine protease repertoire. Sci. Rep. 7, 9147 (2017).
Zhou, J., Zhang, Y.-Y., Li, Q.-Y. & Cai, Z.-H. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates. Int. J. Biol. Sci. 11, 1016–1025 (2015).
Chitkara, C. et al. Seasonality in phytoplankton communities and production in three Arctic fjords across a climate gradient. Prog. Oceanogr. 227, 103317 (2024).
Rawlings, N. & Barrett, A. J. Introduction: Serine Peptidases and Their Clans. Handb. Proteolytic Enzymes 3, 1417–1439 (2013).
Irwin, J. A., Alfredsson, G. A., Lanzetti, A. J., Gudmundsson, H. M. & Engel, P. C. Purification and characterisation of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol. Lett. 201, 285–290 (2001).
Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).
Bourne, Y. & Henrissat, B. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11, 593–600 (2001).
Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: Structures, Functions, and Mechanisms. Annu Rev. Biochem 77, 521–555 (2008).
Fujimoto, Z. Structure and Function of Carbohydrate-Binding Module Families 13 and 42 of Glycoside Hydrolases, Comprising a β-Trefoil Fold. Biosci. Biotechnol. 77, 1363–1371 (2013).
van Aalten, D. M. F. et al. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-Å resolution. PNAS 97, 5842–5847 (2000).
Dutschei, T. et al. Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ. Microbiol 25, 1713–1727 (2023).
Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2005).
Treseder, K. K. & Lennon, J. T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79, 243–262 (2015).
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490–D495 (2014).
Bowman, S. M. & Free, S. J. The structure and synthesis of the fungal cell wall. Bioessays 28, 799–808 (2006).
Moremen, K. W. & Haltiwanger, R. S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat. Chem. Biol. 15, 853–864 (2019).
Miksch, S. et al. Taxonomic and functional stability overrules seasonality in polar benthic microbiomes. ISME J. 18, wrad005 (2024).
Cheng, H., Shao, Z., Lu, C. & Duan, D. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses. BMC Plant Biol. 21, 87 (2021).
Souza, C. P., Almeida, B. C., Colwell, R. R. & Rivera, I. N. G. The Importance of Chitin in the Marine Environment. Mar. Biotechnol. 13, 823–830 (2011).
Feller, G. & Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200–208 (2003).
Cuskin, F. et al. How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. PNAS 109, 20889–20894 (2012).
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
Nguyen, S. T. C., Freund, H. L., Kasanjian, J. & Berlemont, R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol. 102, 1629–1637 (2018).
Talamantes, D., Biabini, N., Dang, H., Abdoun, K. & Berlemont, R. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol. Biofuels 9, 133 (2016).
Fong, M., Berrin, J.-G. & Paës, G. Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies. Biotechnol. Biofuels 9, 12 (2016).
Pasari, N., Gupta, M., Sinha, T., Ogunmolu, F. E. & Yazdani, S. S. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation. Biotechnol. Biofuels Bioprod. 16, 150 (2023).
Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. PNAS 108, 15079–15084 (2011).
Lo Leggio, L. et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat. Commun. 6, 5961 (2015).
Willis, M. D. et al. Polar oceans and sea ice in a changing climate. Elementa: Sci. Anthropocene 11, 1 (2023).
Grau, O. et al. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol. Ecol. 26, 4798–4810 (2017).
Pickup RW, Rhodes G, Saunders JR. Extraction of microbial DNA from aquatic sources: Freshwater. In: Molecular Microbial Ecology Manual (eds Akkermans ADL, Van Elsas JD, De Bruijn FJ). Springer Netherlands (1995).
Rio DC, Ares M, Jr., Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 2010, pdb prot5439 (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78 (2015).
Zhao, Z. et al. Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean. Nat. Commun. 15, 6411 (2024).
Belliardo, C. et al. Improvement of eukaryotic protein predictions from soil metagenomes. Sci. Data 9, 311 (2022).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
Liao, H. et al. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat. Commun. 15, 8315 (2024).
Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146 (2018).
Brownrigg, M. R. Package ‘maps’. R package, (2013).
Huang, H. LinkET: Everything is linkable. R package version 00 3, (2021).
Oksanen, J. et al. Vegan: Community Ecology Package. R. Package Version 2, 1–2 (2015). 22-1.
Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Creat. Elegant Data Visualisations Using Gramm. Graph. Version 2, 1–189 (2016).