• Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol 5, 782–791 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol 2, 17058 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Grossart, H. P. et al. Fungi in aquatic ecosystems. Nat. Rev. Microbiol 17, 339–354 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    PubMed 

    Google Scholar
     

  • Richards, T. A., Jones, M. D., Leonard, G. & Bass, D. Marine fungi: Their ecology and molecular diversity. Ann. Rev. Mar. Sci. 4, 495–522 (2012).

    PubMed 

    Google Scholar
     

  • Baltar, F., Zhao, Z. & Herndl, G. J. Potential and expression of carbohydrate utilization by marine fungi in the global ocean. Microbiome 9, 106 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breyer, E., Zhao, Z., Herndl, G. J. & Baltar, F. Global contribution of pelagic fungi to protein degradation in the ocean. Microbiome 10, 143 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breyer, E. & Baltar, F. The largely neglected ecological role of oceanic pelagic fungi. Trends Ecol. Evol. 38, 870–888 (2023).

    PubMed 

    Google Scholar
     

  • Debeljak, P. & Baltar, F. Fungal diversity and community composition across ecosystems. J. Fungi 9, 510 (2023).

  • Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLOS ONE 8, e56335 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orsi, W. D., Edgcomb, V. P., Christman, G. D. & Biddle, J. F. Gene expression in the deep biosphere. Nature 499, 205–208 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Orsi, W. D. et al. Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis. ISME J. 16, 1245–1261 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Solanki, V. et al. Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi. ISME J. 16, 1818–1830 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    PubMed 

    Google Scholar
     

  • Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed 

    Google Scholar
     

  • Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, K., Bai, M., Sen, B. & Wang, G. Disentangling the structure and function of mycoplankton communities in the context of marine environmental heterogeneity. Sci. Total Environ. 766, 142635 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083e1021. (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo, H. et al. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat. Ecol. Evol. 4, 1639–1649 (2020).

    PubMed 

    Google Scholar
     

  • Kharbush, J. J. et al. Particulate organic carbon deconstructed: Molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).

  • Cerro-Gálvez, E. et al. Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters. Environ. Microbiol 21, 1466–1481 (2019).

    PubMed 

    Google Scholar
     

  • Zhao, Z., Amano, C., Reinthaler, T., Orellana, M. V. & Herndl, G. J. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. Sci. Adv. 10, eadn5143 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, eaaz4354 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F.-Q. et al. Particle-attached bacteria act as gatekeepers in the decomposition of complex phytoplankton polysaccharides. Microbiome 12, 32 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comstock, J. et al. Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles. ISME Commun. 4, 1 (2024).

  • Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellogg, C. T. E. & Deming, J. W. Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean. FEMS Microbiol. Ecol. 89, 360–375 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Q., He, K., Collins, G., De Vrieze, J. & Wu, G. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean. Water 7, 52 (2024).


    Google Scholar
     

  • Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol 18, 2001–2009 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Hassett, B. T. et al. Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME J. 13, 1484–1496 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terrado, R. et al. Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol. 34, 1901–1914 (2011).


    Google Scholar
     

  • Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z., Baltar, F. & Herndl Gerhard, J. Decoupling between the genetic potential and the metabolic regulation and expression in microbial organic matter cleavage across microbiomes. Microbiol Spectr. 0, e03036–03023 (2024).


    Google Scholar
     

  • Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Ann. Rev. Mar. Sci. 3, 401–425 (2011).

    PubMed 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11, 362–373 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orsi, W. D., Richards, T. A. & Francis, W. R. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol 3, 32–37 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Sen, K. Sen, B. & Wang, G. Diversity, abundance, and ecological roles of planktonic fungi in marine environments. J. Fungi (Basel) 8, 491 (2022).

  • Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar-Alekseyeva, K., Herndl, G. J. & Baltar, F. Release of cell-free enzymes by marine pelagic fungal strains. Front Fungal Biol. 4, 1209265 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett, K., Jensen, K., Meyer, A. S., Frisvad, J. C. & Lange, L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Sci. Rep. 10, 5158 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chrismas, N. & Cunliffe, M. Depth-dependent mycoplankton glycoside hydrolase gene activity in the open ocean—evidence from the Tara Oceans eukaryote metatranscriptomes. ISME J. 14, 2361–2365 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasana, R. C. Proteases from psychrotrophs: An overview. Crit. Rev. Microbiol. 36, 134–145 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bruno, S., Coppola, D., di Prisco, G., Giordano, D. & Verde, C. Enzymes from marine polar regions and their biotechnological applications. Mar. Drugs 17, 544 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturluson, M., Gissel Nielsen, T. & Wassmann, P. Bacterial abundance, biomass and production during spring blooms in the northern Barents Sea. Deep Sea Res. Part II: Top. Stud. Oceanogr. 55, 2186–2198 (2008).

    CAS 

    Google Scholar
     

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105, 7774–7778 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. PNAS 110, 2342–2347 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdel-Sater, F., El Bakkoury, M., Urrestarazu, A., Vissers, S. & André, B. Amino acid signaling in yeast: Casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol. Cell. Biol. 24, 9771–9785 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 e1021 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales, S. E., Biswas, A., Herndl, G. J. & Baltar, F. Global structuring of phylogenetic and functional diversity of pelagic fungi by depth and temperature. Front Mar. Sci. 6, 131 (2019).

  • Cunliffe, M., Hollingsworth, A., Bain, C., Sharma, V. & Taylor, J. D. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 30, 135–138 (2017).


    Google Scholar
     

  • Alekseyeva, K. S., Herndl, G. J. & Baltar F. Extracellular enzymatic activities of oceanic pelagic fungal strains and the influence of temperature. J. Fungi (Basel) 8, 571 (2022).

  • Trejos-Espeleta, J. C. et al. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proc. Natl. Acad. Sci. 121, e2402689121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Sen, K., He, Y., Xie, Y. & Wang, G. Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status. Sci. Total Environ. 683, 822–833 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gow Neil AR, Latge J-P, Munro Carol A. The fungal cell wall: StrUcture, Biosynthesis, And Function. Microbiol. Spectrum 5, https://doi.org/10.1128/microbiolspec.funk-0035-2016 (2017).

  • Raghukumar, S. Fungi in Coastal and Oceanic Marine Ecosystems, (2017).

  • Amend, A. et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio. 10, https://doi.org/10.1128/mbio.01189-01118 (2019).

  • Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol 18, 1646–1653 (2016).

    PubMed 

    Google Scholar
     

  • Marchetta, A. et al. A deep insight into the diversity of microfungal communities in Arctic and Antarctic Lakes. J. Fungi 9, 1095 (2023).

    CAS 

    Google Scholar
     

  • Freeman, K. R. et al. Evidence that chytrids dominate fungal communities in high-elevation soils. PNAS 106, 18315–18320 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, S. K., Naff, C. S. & Lynch, R. C. Fungal communities at the edge: Ecological lessons from high alpine fungi. Fungal Ecol. 5, 443–452 (2012).


    Google Scholar
     

  • Triadó-Margarit, X. & Casamayor, E. O. Genetic diversity of planktonic eukaryotes in high mountain lakes (Central Pyrenees, Spain). Environ. Microbiol 14, 2445–2456 (2012).

    PubMed 

    Google Scholar
     

  • Kagami, M., Miki, T. & Takimoto, G. Mycoloop: chytrids in aquatic food webs. Front microbiol 5, 166 (2014).

  • Proceedings of 3rd International Conference on Document Analysis and Recognition. In: Proceedings of 3rd International Conference on Document Analysis and Recognition) (1995).

  • Muszewska, A. et al. Fungal lifestyle reflected in serine protease repertoire. Sci. Rep. 7, 9147 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J., Zhang, Y.-Y., Li, Q.-Y. & Cai, Z.-H. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates. Int. J. Biol. Sci. 11, 1016–1025 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitkara, C. et al. Seasonality in phytoplankton communities and production in three Arctic fjords across a climate gradient. Prog. Oceanogr. 227, 103317 (2024).


    Google Scholar
     

  • Rawlings, N. & Barrett, A. J. Introduction: Serine Peptidases and Their Clans. Handb. Proteolytic Enzymes 3, 1417–1439 (2013).


    Google Scholar
     

  • Irwin, J. A., Alfredsson, G. A., Lanzetti, A. J., Gudmundsson, H. M. & Engel, P. C. Purification and characterisation of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol. Lett. 201, 285–290 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Bourne, Y. & Henrissat, B. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11, 593–600 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: Structures, Functions, and Mechanisms. Annu Rev. Biochem 77, 521–555 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Fujimoto, Z. Structure and Function of Carbohydrate-Binding Module Families 13 and 42 of Glycoside Hydrolases, Comprising a β-Trefoil Fold. Biosci. Biotechnol. 77, 1363–1371 (2013).

    CAS 

    Google Scholar
     

  • van Aalten, D. M. F. et al. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-Å resolution. PNAS 97, 5842–5847 (2000).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutschei, T. et al. Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ. Microbiol 25, 1713–1727 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. & Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2005).

    PubMed 

    Google Scholar
     

  • Treseder, K. K. & Lennon, J. T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79, 243–262 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490–D495 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bowman, S. M. & Free, S. J. The structure and synthesis of the fungal cell wall. Bioessays 28, 799–808 (2006).

    PubMed 

    Google Scholar
     

  • Moremen, K. W. & Haltiwanger, R. S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat. Chem. Biol. 15, 853–864 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miksch, S. et al. Taxonomic and functional stability overrules seasonality in polar benthic microbiomes. ISME J. 18, wrad005 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H., Shao, Z., Lu, C. & Duan, D. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses. BMC Plant Biol. 21, 87 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza, C. P., Almeida, B. C., Colwell, R. R. & Rivera, I. N. G. The Importance of Chitin in the Marine Environment. Mar. Biotechnol. 13, 823–830 (2011).

    CAS 

    Google Scholar
     

  • Feller, G. & Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200–208 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuskin, F. et al. How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. PNAS 109, 20889–20894 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, S. T. C., Freund, H. L., Kasanjian, J. & Berlemont, R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol. 102, 1629–1637 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talamantes, D., Biabini, N., Dang, H., Abdoun, K. & Berlemont, R. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol. Biofuels 9, 133 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong, M., Berrin, J.-G. & Paës, G. Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies. Biotechnol. Biofuels 9, 12 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasari, N., Gupta, M., Sinha, T., Ogunmolu, F. E. & Yazdani, S. S. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation. Biotechnol. Biofuels Bioprod. 16, 150 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. PNAS 108, 15079–15084 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo Leggio, L. et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat. Commun. 6, 5961 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Willis, M. D. et al. Polar oceans and sea ice in a changing climate. Elementa: Sci. Anthropocene 11, 1 (2023).

  • Grau, O. et al. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol. Ecol. 26, 4798–4810 (2017).

    PubMed 

    Google Scholar
     

  • Pickup RW, Rhodes G, Saunders JR. Extraction of microbial DNA from aquatic sources: Freshwater. In: Molecular Microbial Ecology Manual (eds Akkermans ADL, Van Elsas JD, De Bruijn FJ). Springer Netherlands (1995).

  • Rio DC, Ares M, Jr., Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 2010, pdb prot5439 (2010).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).


    Google Scholar
     

  • Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean. Nat. Commun. 15, 6411 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belliardo, C. et al. Improvement of eukaryotic protein predictions from soil metagenomes. Sci. Data 9, 311 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).


    Google Scholar
     

  • Liao, H. et al. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat. Commun. 15, 8315 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brownrigg, M. R. Package ‘maps’. R package, (2013).

  • Huang, H. LinkET: Everything is linkable. R package version 00 3, (2021).

  • Oksanen, J. et al. Vegan: Community Ecology Package. R. Package Version 2, 1–2 (2015). 22-1.


    Google Scholar
     

  • Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Creat. Elegant Data Visualisations Using Gramm. Graph. Version 2, 1–189 (2016).


    Google Scholar