• Tinkham, M. Introduction to superconductivity. Second Edition, Dover Books on Physics (Courier Corporation, 2004).

  • Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    ADS 

    Google Scholar
     

  • Nicoletti, D. & Cavalleri, A. Nonlinear light–matter interaction at terahertz frequencies. Adv. Opt. Photonics 8, 401–464 (2016).

    ADS 

    Google Scholar
     

  • Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation. Phys. Rev. Lett 111, 057002 (2013).

    ADS 

    Google Scholar
     

  • Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–9 (2014).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Tsuji, N. & Aoki, H. Theory of Anderson pseudospin resonance with Higgs mode in superconductors. Phys. Rev. B 92, 064508–064508 (2015).

    ADS 

    Google Scholar
     

  • Matsunaga, R. et al. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 96, 020505(R) (2017).

    ADS 

    Google Scholar
     

  • Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–103 (2020).

    ADS 

    Google Scholar
     

  • Cea, T., Castellani, C. & Benfatto, L. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution. Phys. Rev. B 93, 180507(R)–180507(R) (2016).

    ADS 

    Google Scholar
     

  • Jujo, T. Quasiclassical theory on third-harmonic generation in conventional superconductors with paramagnetic impurities. J. Phys. Soc. Jpn 87, 024704 (2018).

    ADS 

    Google Scholar
     

  • Murotani, Y. & Shimano, R. Nonlinear optical response of collective modes in multiband superconductors assisted by nonmagnetic impurities. Phys. Rev. B 99, 224510 (2019).

    ADS 

    Google Scholar
     

  • Silaev, M. Nonlinear electromagnetic response and Higgs-mode excitation in BCS superconductors with impurities. Phys. Rev. B 99, 224511 (2019).

    ADS 

    Google Scholar
     

  • Tsuji, N. & Nomura, Y. Higgs-mode resonance in third harmonic generation in NbN superconductors: multiband electron–phonon coupling, impurity scattering, and polarization-angle dependence. Phys. Rev. Res. 2, 043029 (2020).


    Google Scholar
     

  • Seibold, G., Udina, M., Castellani, C. & Benfatto, L. Third harmonic generation from collective modes in disordered superconductors. Phys. Rev. B 103, 014512 (2021).

    ADS 

    Google Scholar
     

  • Udina, M. et al. The non-linear optical response in cuprates: predominance of the BCS response over the Higgs mode. Faraday Discuss. 237, 168–185 (2022).

    ADS 

    Google Scholar
     

  • Fiore, J., Udina, M., Marciani, M., Seibold, G. & Benfatto, L. Contribution of collective excitations to third harmonic generation in two-band superconductors: the case of MgB2. Phys. Rev. B 106, 094515 (2022).

    ADS 

    Google Scholar
     

  • Seibold, G. On the evaluation of higher harmonic current responses for high-field spectroscopies in disordered superconductors. Condens. Matter 8, 95 (2023).


    Google Scholar
     

  • Katsumi, K. et al. Revealing novel aspects of light-matter coupling by terahertz two-dimensional coherent spectroscopy: the case of the amplitude mode in superconductors. Phys. Rev. Lett. 132, 256903 (2024).


    Google Scholar
     

  • Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    ADS 

    Google Scholar
     

  • Katsumi, K., Li, Z. Z., Raffy, H., Gallais, Y. & Shimano, R. Superconducting fluctuations probed by the Higgs mode in Bi2Sr2 CaCu2O8.xÿthin films. Phys. Rev. B 102, 054510 (2020).

    ADS 

    Google Scholar
     

  • Chu, H. et al. Fano interference between collective modes in cuprate high-Tc superconductors. Nat. Commun. 14, 1343 (2023).

    ADS 

    Google Scholar
     

  • Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2 CaCu2O8.x driven by an intense terahertz pulse. Phys. Rev. Lett 120, 117001 (2018).

    ADS 

    Google Scholar
     

  • Chu, H. et al. Phase-resolved higgs response in superconducting cuprates. Nat. Commun 11, 1793 (2020).

    ADS 

    Google Scholar
     

  • Yuan, J. et al. Dynamical interplay between superconductivity and pseudogap in cuprates as revealed by terahertz third-harmonic generation spectroscopy. Sci. Adv. 10, eadg9211 (2024).


    Google Scholar
     

  • Puviani, M., Haenel, R. & Manske, D. Quench-drive spectroscopy and high-harmonic generation in BCS superconductors. Phys. Rev. B 107, 094501 (2023).

    ADS 

    Google Scholar
     

  • Benfatto, L., Castellani, C. & Cea, T. Comment on “calculation of an enhanced A1g symmetry mode induced by Higgs oscillations in the Raman spectrum of high-temperature cuprate superconductors”. Phys. Rev. Lett. 129, 199701 (2022).

    ADS 

    Google Scholar
     

  • Benfatto, L., Castellani, C. & Seibold, G. Linear and nonlinear current response in disordered d-wave superconductors. Phys. Rev. B 108, 134508 (2023).

    ADS 

    Google Scholar
     

  • Hoffmann, M. C., Brandt, N. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Terahertz Kerr effect. Appl. Phys. Lett 95, 231105 (2009).

    ADS 

    Google Scholar
     

  • Yada, H., Miyamoto, T. & Okamoto, H. Terahertz-field-driven sub-picosecond optical switching enabled by large third-order optical nonlinearity in a one-dimensional Mott insulator. Appl. Phys. Lett 102, 091104 (2013).

    ADS 

    Google Scholar
     

  • Benhabib, S. et al. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering. Phys. Rev. B 92, 134502 (2015).

    ADS 

    Google Scholar
     

  • Le Tacon, M., Sacuto, A. & Colson, D. Two distinct electronic contributions in the fully symmetric Raman response of high-Tc cuprates. Phys. Rev. B 71, 100504 (2005).


    Google Scholar
     

  • Blanc, S. et al. Quantitative Raman measurement of the evolution of the Cooper-pair density with doping in Bi2Sr2CaCu2O8+δ superconductors. Phys. Rev. B 80, 140502 (2009).

    ADS 

    Google Scholar
     

  • Blanc, S. et al. Loss of antinodal coherence with a single d-wave superconducting gap leads to two energy scales for underdoped cuprate superconductors. Phys. Rev. B 82, 144516 (2010).

    ADS 

    Google Scholar
     

  • Sacuto, A. et al. Electronic Raman scattering in copper oxide superconductors: Understanding the phase diagram. C. R. Phys. 12, 480–501 (2011).

    ADS 

    Google Scholar
     

  • Cooper, S. et al. Gap anisotropy and phonon self-energy effects in single-crystal YBa2Cu3O7−δ. Phys. Rev. B 38, 11934 (1988).

    ADS 

    Google Scholar
     

  • Staufer, T., Nemetschek, R., Hackl, R., Müller, P. & Veith, H. Investigation of the superconducting order parameter in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 1069 (1992).

    ADS 

    Google Scholar
     

  • Gallais, Y., Sacuto, A. & Colson, D. Resonant Raman scattering in mercurate single crystals. Physica C: Superconductivity 408, 785–788 (2004).

    ADS 

    Google Scholar
     

  • Venturini, F., Michelucci, U., Devereaux, T. P. & Kampf, A. P. Collective spin fluctuation mode and Raman scattering in superconducting cuprates. Phys. Rev. B 62, 15204–15207 (2000).

    ADS 

    Google Scholar
     

  • Montiel, X. et al. η collective mode as A1g Raman resonance in cuprate superconductors. Phys. Rev. B 93, 024515 (2016).

    ADS 

    Google Scholar
     

  • Venturini, F. et al. Doping dependence of the electronic Raman spectra in cuprates. J. Phys. Chem. Solids 63, 2345–2348 (2002).

    ADS 

    Google Scholar
     

  • Glier, T. E. et al. Direct observation of the Higgs mode in a superconductor by non-equilibrium Raman scattering. Nat. Commu 16, 7027 (2025).


    Google Scholar
     

  • Gallais, Y. & Paul, I. Charge nematicity and electronic Raman scattering in iron-based superconductors. C. R. Phys. 17, 113–139 (2016).

    ADS 

    Google Scholar
     

  • Labat, D., Kotetes, P., Andersen, B. M. & Paul, I. Variation of shear moduli across superconducting phase transitions. Phys. Rev. B 101, 144502 (2020).

    ADS 

    Google Scholar
     

  • Anzai, H. et al. Relation between the nodal and antinodal gap and critical temperature in superconducting Bi2212. Nat. Commun. 4, 1815 (2013).

    ADS 

    Google Scholar
     

  • Grasset, R. et al. Terahertz pulse-driven collective mode in the nematic superconducting state of Ba1–xKxFe2As2. npj Quantum Mater. 7, 4 (2022).

    ADS 

    Google Scholar
     

  • Müller, M. A., Volkov, P. A., Paul, I. & Eremin, I. M. Interplay between nematicity and Bardasis–Schrieffer modes in the short-time dynamics of unconventional superconductors. Phys. Rev. B 103, 024519 (2021).

    ADS 

    Google Scholar
     

  • Auvray, N. et al. Nematic fluctuations in the cuprate superconductor Bi2Sr2CaCu2O8+δ. Nat. Commun. 10, 5209 (2019).

    ADS 

    Google Scholar
     

  • Ishida, K. et al. Divergent nematic susceptibility near the pseudogap critical point in a cuprate superconductor. J. Phys. Soc. Jpn. 89, 064707 (2020).

    ADS 

    Google Scholar
     

  • Nakata, S. et al. Nematicity in a cuprate superconductor revealed by angle-resolved photoemission spectroscopy under uniaxial strain. npj Quantum Mater. 6, 86 (2021).

    ADS 

    Google Scholar
     

  • Presland, M., Tallon, J., Buckley, R., Liu, R. & Flower, N. General trends in oxygen stoichiometry effects on tc in bi and tl superconductors. Physica C: Superconductivity 176, 95–105 (1991).

    ADS 

    Google Scholar
     

  • Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area tHz-pulse generation. Opt. Express 10, 1161 (2002).

  • Watanabe, S., Minami, N. & Shimano, R. Intense terahertz pulse induced exciton generation in carbon nanotubes. Opt. Express 19, 1528–1538 (2011).

    ADS 

    Google Scholar
     

  • Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).

  • Molegraaf, H., Presura, C., Van Der Marel, D., Kes, P. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ. Science 295, 2239–2241 (2002).

    ADS 

    Google Scholar
     

  • Carbone, F. et al. Doping dependence of the redistribution of optical spectral weight in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 74, 064510 (2006).

    ADS 

    Google Scholar
     

  • Kuzmenko, A., Molegraaf, H., Carbone, F. & Van Der Marel, D. Temperature-modulation analysis of superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8. Phys. Rev. B 72, 144503 (2005).

    ADS 

    Google Scholar
     

  • Gedik, N. et al. Abrupt transition in quasiparticle dynamics at optimal doping in a cuprate superconductor system. Phys. Rev. Lett. 95, 117005 (2005).

    ADS 

    Google Scholar
     

  • Giannetti, C. et al. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011).

    ADS 

    Google Scholar
     

  • Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    ADS 

    Google Scholar
     

  • Segre, G. P. et al. Photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II). Phys. Rev. Lett. 88, 137001 (2002).

    ADS 

    Google Scholar
     

  • Demsar, J., Averitt, R. D., Kabanov, V. V. & Mihailovic, D. Comment on “photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II)”. Phys. Rev. Lett. 91, 169701 (2003).

    ADS 

    Google Scholar
     

  • Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Gedik et al. reply. Phys. Rev. Lett. 91, 169702 (2003).

    ADS 

    Google Scholar
     

  • Rübhausen, M., Gozar, A., Klein, M., Guptasarma, P. & Hinks, D. Superconductivity-induced optical changes for energies of 100 δ in the cuprates. Phys. Rev. B 63, 224514 (2001).

    ADS 

    Google Scholar
     

  • Hayes, W. & Loudon, R. Scattering of Light by Crystals. Dover Books on Physics (Courier Corporation, 2012).