Tinkham, M. Introduction to superconductivity. Second Edition, Dover Books on Physics (Courier Corporation, 2004).
Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).
Nicoletti, D. & Cavalleri, A. Nonlinear light–matter interaction at terahertz frequencies. Adv. Opt. Photonics 8, 401–464 (2016).
Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation. Phys. Rev. Lett 111, 057002 (2013).
Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–9 (2014).
Tsuji, N. & Aoki, H. Theory of Anderson pseudospin resonance with Higgs mode in superconductors. Phys. Rev. B 92, 064508–064508 (2015).
Matsunaga, R. et al. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 96, 020505(R) (2017).
Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–103 (2020).
Cea, T., Castellani, C. & Benfatto, L. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution. Phys. Rev. B 93, 180507(R)–180507(R) (2016).
Jujo, T. Quasiclassical theory on third-harmonic generation in conventional superconductors with paramagnetic impurities. J. Phys. Soc. Jpn 87, 024704 (2018).
Murotani, Y. & Shimano, R. Nonlinear optical response of collective modes in multiband superconductors assisted by nonmagnetic impurities. Phys. Rev. B 99, 224510 (2019).
Silaev, M. Nonlinear electromagnetic response and Higgs-mode excitation in BCS superconductors with impurities. Phys. Rev. B 99, 224511 (2019).
Tsuji, N. & Nomura, Y. Higgs-mode resonance in third harmonic generation in NbN superconductors: multiband electron–phonon coupling, impurity scattering, and polarization-angle dependence. Phys. Rev. Res. 2, 043029 (2020).
Seibold, G., Udina, M., Castellani, C. & Benfatto, L. Third harmonic generation from collective modes in disordered superconductors. Phys. Rev. B 103, 014512 (2021).
Udina, M. et al. The non-linear optical response in cuprates: predominance of the BCS response over the Higgs mode. Faraday Discuss. 237, 168–185 (2022).
Fiore, J., Udina, M., Marciani, M., Seibold, G. & Benfatto, L. Contribution of collective excitations to third harmonic generation in two-band superconductors: the case of MgB2. Phys. Rev. B 106, 094515 (2022).
Seibold, G. On the evaluation of higher harmonic current responses for high-field spectroscopies in disordered superconductors. Condens. Matter 8, 95 (2023).
Katsumi, K. et al. Revealing novel aspects of light-matter coupling by terahertz two-dimensional coherent spectroscopy: the case of the amplitude mode in superconductors. Phys. Rev. Lett. 132, 256903 (2024).
Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).
Katsumi, K., Li, Z. Z., Raffy, H., Gallais, Y. & Shimano, R. Superconducting fluctuations probed by the Higgs mode in Bi2Sr2 CaCu2O8.xÿthin films. Phys. Rev. B 102, 054510 (2020).
Chu, H. et al. Fano interference between collective modes in cuprate high-Tc superconductors. Nat. Commun. 14, 1343 (2023).
Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2 CaCu2O8.x driven by an intense terahertz pulse. Phys. Rev. Lett 120, 117001 (2018).
Chu, H. et al. Phase-resolved higgs response in superconducting cuprates. Nat. Commun 11, 1793 (2020).
Yuan, J. et al. Dynamical interplay between superconductivity and pseudogap in cuprates as revealed by terahertz third-harmonic generation spectroscopy. Sci. Adv. 10, eadg9211 (2024).
Puviani, M., Haenel, R. & Manske, D. Quench-drive spectroscopy and high-harmonic generation in BCS superconductors. Phys. Rev. B 107, 094501 (2023).
Benfatto, L., Castellani, C. & Cea, T. Comment on “calculation of an enhanced A1g symmetry mode induced by Higgs oscillations in the Raman spectrum of high-temperature cuprate superconductors”. Phys. Rev. Lett. 129, 199701 (2022).
Benfatto, L., Castellani, C. & Seibold, G. Linear and nonlinear current response in disordered d-wave superconductors. Phys. Rev. B 108, 134508 (2023).
Hoffmann, M. C., Brandt, N. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Terahertz Kerr effect. Appl. Phys. Lett 95, 231105 (2009).
Yada, H., Miyamoto, T. & Okamoto, H. Terahertz-field-driven sub-picosecond optical switching enabled by large third-order optical nonlinearity in a one-dimensional Mott insulator. Appl. Phys. Lett 102, 091104 (2013).
Benhabib, S. et al. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering. Phys. Rev. B 92, 134502 (2015).
Le Tacon, M., Sacuto, A. & Colson, D. Two distinct electronic contributions in the fully symmetric Raman response of high-Tc cuprates. Phys. Rev. B 71, 100504 (2005).
Blanc, S. et al. Quantitative Raman measurement of the evolution of the Cooper-pair density with doping in Bi2Sr2CaCu2O8+δ superconductors. Phys. Rev. B 80, 140502 (2009).
Blanc, S. et al. Loss of antinodal coherence with a single d-wave superconducting gap leads to two energy scales for underdoped cuprate superconductors. Phys. Rev. B 82, 144516 (2010).
Sacuto, A. et al. Electronic Raman scattering in copper oxide superconductors: Understanding the phase diagram. C. R. Phys. 12, 480–501 (2011).
Cooper, S. et al. Gap anisotropy and phonon self-energy effects in single-crystal YBa2Cu3O7−δ. Phys. Rev. B 38, 11934 (1988).
Staufer, T., Nemetschek, R., Hackl, R., Müller, P. & Veith, H. Investigation of the superconducting order parameter in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 1069 (1992).
Gallais, Y., Sacuto, A. & Colson, D. Resonant Raman scattering in mercurate single crystals. Physica C: Superconductivity 408, 785–788 (2004).
Venturini, F., Michelucci, U., Devereaux, T. P. & Kampf, A. P. Collective spin fluctuation mode and Raman scattering in superconducting cuprates. Phys. Rev. B 62, 15204–15207 (2000).
Montiel, X. et al. η collective mode as A1g Raman resonance in cuprate superconductors. Phys. Rev. B 93, 024515 (2016).
Venturini, F. et al. Doping dependence of the electronic Raman spectra in cuprates. J. Phys. Chem. Solids 63, 2345–2348 (2002).
Glier, T. E. et al. Direct observation of the Higgs mode in a superconductor by non-equilibrium Raman scattering. Nat. Commu 16, 7027 (2025).
Gallais, Y. & Paul, I. Charge nematicity and electronic Raman scattering in iron-based superconductors. C. R. Phys. 17, 113–139 (2016).
Labat, D., Kotetes, P., Andersen, B. M. & Paul, I. Variation of shear moduli across superconducting phase transitions. Phys. Rev. B 101, 144502 (2020).
Anzai, H. et al. Relation between the nodal and antinodal gap and critical temperature in superconducting Bi2212. Nat. Commun. 4, 1815 (2013).
Grasset, R. et al. Terahertz pulse-driven collective mode in the nematic superconducting state of Ba1–xKxFe2As2. npj Quantum Mater. 7, 4 (2022).
Müller, M. A., Volkov, P. A., Paul, I. & Eremin, I. M. Interplay between nematicity and Bardasis–Schrieffer modes in the short-time dynamics of unconventional superconductors. Phys. Rev. B 103, 024519 (2021).
Auvray, N. et al. Nematic fluctuations in the cuprate superconductor Bi2Sr2CaCu2O8+δ. Nat. Commun. 10, 5209 (2019).
Ishida, K. et al. Divergent nematic susceptibility near the pseudogap critical point in a cuprate superconductor. J. Phys. Soc. Jpn. 89, 064707 (2020).
Nakata, S. et al. Nematicity in a cuprate superconductor revealed by angle-resolved photoemission spectroscopy under uniaxial strain. npj Quantum Mater. 6, 86 (2021).
Presland, M., Tallon, J., Buckley, R., Liu, R. & Flower, N. General trends in oxygen stoichiometry effects on tc in bi and tl superconductors. Physica C: Superconductivity 176, 95–105 (1991).
Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area tHz-pulse generation. Opt. Express 10, 1161 (2002).
Watanabe, S., Minami, N. & Shimano, R. Intense terahertz pulse induced exciton generation in carbon nanotubes. Opt. Express 19, 1528–1538 (2011).
Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
Molegraaf, H., Presura, C., Van Der Marel, D., Kes, P. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ. Science 295, 2239–2241 (2002).
Carbone, F. et al. Doping dependence of the redistribution of optical spectral weight in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 74, 064510 (2006).
Kuzmenko, A., Molegraaf, H., Carbone, F. & Van Der Marel, D. Temperature-modulation analysis of superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8. Phys. Rev. B 72, 144503 (2005).
Gedik, N. et al. Abrupt transition in quasiparticle dynamics at optimal doping in a cuprate superconductor system. Phys. Rev. Lett. 95, 117005 (2005).
Giannetti, C. et al. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011).
Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).
Segre, G. P. et al. Photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II). Phys. Rev. Lett. 88, 137001 (2002).
Demsar, J., Averitt, R. D., Kabanov, V. V. & Mihailovic, D. Comment on “photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II)”. Phys. Rev. Lett. 91, 169701 (2003).
Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Gedik et al. reply. Phys. Rev. Lett. 91, 169702 (2003).
Rübhausen, M., Gozar, A., Klein, M., Guptasarma, P. & Hinks, D. Superconductivity-induced optical changes for energies of 100 δ in the cuprates. Phys. Rev. B 63, 224514 (2001).
Hayes, W. & Loudon, R. Scattering of Light by Crystals. Dover Books on Physics (Courier Corporation, 2012).