• Wang, L. V. & Wu, H. Biomedical Optics: Principles and Imaging. (John Wiley & Sons, 2007).

  • Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Prim. 1, 68 (2021).

    CAS 

    Google Scholar
     

  • Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Adaptive optics for optical microscopy. Biomed. Opt. Express 14, 1732–1756 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papadopoulos, I. N., Jouhanneau, J.-S., Poulet, J. F. & Judkewitz, B. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photonics 11, 116–123 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Papadopoulos, I. N. et al. Dynamic conjugate F-SHARP microscopy. Light Sci. Appl. 9, 110 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • May, M. A. et al. Fast holographic scattering compensation for deep tissue biological imaging. Nat. Commun. 12, 4340 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, Z. et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol. 40, 1663–1671 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Aizik, D., Gkioulekas, I. & Levin, A. Fluorescent wavefront shaping using incoherent iterative phase conjugation. Optica 9, 746–754 (2022).

    ADS 

    Google Scholar
     

  • Aizik, D. & Levin, A. Non-invasive and noise-robust light focusing using confocal wavefront shaping. Nat. Commun. 15, 5575 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, S., Lee, H., Hong, J. H., Lim, Y.-S. & Choi, W. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat. Commun. 11, 5721 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, Y. et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat. Commun. 14, 105 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, S. et al. Tracing multiple scattering trajectories for deep optical imaging in scattering media. Nat. Commun. 14, 6871 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y.-R., Kim, D.-Y., Jo, Y., Kim, M. & Choi, W. Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium. Nat. Commun. 14, 1878 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, e1600370 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).

  • Balondrade, P. et al. Multi-spectral reflection matrix for ultrafast 3D label-free microscopy. Nat. Photonics 18, 1097–1104 (2024).

    CAS 

    Google Scholar
     

  • Murray, G. et al. Aberration free synthetic aperture second harmonic generation holography. Opt. Express 31, 32434–32457 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L. et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat. Commun. 13, 1447 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. 109, 8434–8439 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 6, 549–553 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Yeminy, T. & Katz, O. Guidestar-free image-guided wavefront shaping. Sci. Adv. 7, eabf5364 (2021).

  • Feng, B. Y. et al. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv. 9, eadg4671 (2023).

  • Haim, O., Boger-Lombard, J. & Katz, O. Image-guided computational holographic wavefront shaping. Nat. Photonics 19, 44–53 (2025).

    CAS 

    Google Scholar
     

  • Shen, Y., Liu, Y., Ma, C. & Wang, L. V. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. J. Biomed. Opt. 21, 085001–085001 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Z., Li, C., Khadria, A., Zhang, Y. & Wang, L. V. High-gain and high-speed wavefront shaping through scattering media. Nat. Photonics 17, 299–305 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vellekoop, I. M. & Mosk, A. P. Universal Optimal Transmission of Light Through Disordered Materials. Phys. Rev. Lett. 101, 120601 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics 5, 154–157 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat. Commun. 3, 928 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Si, K., Fiolka, R. & Cui, M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Sci. Rep. 2, 748 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photonics 7, 300–305 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Z. & Wang, L. V. Focusing light into scattering media with ultrasound-induced field perturbation. Light Sci. Appl. 10, 159 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C., Xu, X. & Wang, L. V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000\times optical power gain. Sci. Rep. 5, 8896 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. J. Biomed. Opt. 23, 010501–010501 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, Y., Tay, J. W., Yang, Q. & Wang, L. V. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation. Opt. Lett. 39, 3441–3444 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, H. et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica 4, 1337–1343 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Sci. Adv. 5, eaay1211 (2019).

  • Ruan, H., Jang, M. & Yang, C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nat. Commun. 6, 8968 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vellekoop, I. M., Van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684–689 (2015).

    CAS 

    Google Scholar
     

  • Freund, I., Rosenbluh, M. & Feng, S. Memory Effects in Propagation of Optical Waves through Disordered Media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017).

    ADS 

    Google Scholar
     

  • Kubby, J., Gigan, S. & Cui, M. Wavefront Shaping for Biomedical Imaging. (Cambridge University Press, 2019).

  • Ma, C., Xu, X., Liu, Y. & Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photonics 8, 931–936 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, E. H., Ruan, H., Yang, C. & Judkewitz, B. Focusing on moving targets through scattering samples. Optica 1, 227–232 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keyes, R. W. Nonlinear absorbers of light. IBM J. Res. Dev. 7, 334–336 (1963).


    Google Scholar
     

  • Silberberg, Y. & Bar-Joseph, I. Transient effects in degenerate four-wave mixing in saturable absorbers. IEEE J. Quantum Electron 17, 1967–1970 (1981).

    ADS 

    Google Scholar
     

  • Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).

  • McIntosh, R. et al. Delivering broadband light deep inside diffusive media. Nat. Photonics 18, 744–750 (2024).

    CAS 

    Google Scholar
     

  • Horisaki, R., Okamoto, Y. & Tanida, J. Single-shot noninvasive three-dimensional imaging through scattering media. Opt. Lett. 44, 4032–4035 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Aarav, S. & Fleischer, J. W. Using speckle correlations for single-shot 3D imaging. Appl. Opt. 62, D181–D186 (2023).

    PubMed 

    Google Scholar
     

  • Aarav, S. & Fleischer, J. W. Depth-resolved speckle correlation imaging using the axial memory effect. Opt. Express 32, 23750–23757 (2024).

    PubMed 

    Google Scholar
     

  • Packer, A. M., Roska, B. & Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 16, 805–815 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharman, W. M., van Lier, J. E. & Allen, C. M. Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug Deliv. Rev. 56, 53–76 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. The development of site-specific drug delivery nanocarriers based on receptor mediation. J. Controlled Release 193, 139–153 (2014).

    CAS 

    Google Scholar
     

  • Iyer, A. K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Algorri, J. F., Ochoa, M., Roldan-Varona, P., Rodriguez-Cobo, L. & López-Higuera, J. M. Light technology for efficient and effective photodynamic therapy: a critical review. Cancers 13, 3484 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Takemura, T., Ohta, N., Nakajima, S. & Sakata, I. Critical importance of the triplet lifetime of photosensitizer in photodynamic therapy of tumor. Photochem. Photobiol. 50, 339–344 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Ippen, E. P. Principles of passive mode locking. Appl. Phys. B Laser Opt. 58, 159–170 (1994).

    ADS 

    Google Scholar
     

  • Woo, C. M. et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping. APL Photonics 7, 046109 (2022).

  • Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics 9, 126–132 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay, J. W., Lai, P., Suzuki, Y. & Wang, L. V. Ultrasonically encoded wavefront shaping for focusing into random media. Sci. Rep. 4, 3918 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica 2, 728–735 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Ma, C., Shen, Y., Shi, J. & Wang, L. V. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica 4, 280–288 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemphill, A. S., Shen, Y., Liu, Y. & Wang, L. V. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. Appl. Phys. Lett. 111, 221109 (2017).

  • Luo, J. et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. Sci. Adv. 8, eadd9158 (2022).