• Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929).

    ADS 

    Google Scholar
     

  • Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. Ser. A 145, 523–529 (1934).

    ADS 

    Google Scholar
     

  • Feldmann, J. et al. Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys. Rev. B 46, 7252 (1992).

    ADS 

    Google Scholar
     

  • Ben Dahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508 (1996).

    ADS 

    Google Scholar
     

  • Wilkinson, S., Bharucha, C., Madison, K., Niu, Q. & Raizen, M. Observation of atomic Wannier-Stark ladders in an accelerating optical potential. Phys. Rev. Lett. 76, 4512 (1996).

    ADS 

    Google Scholar
     

  • Geiger, Z. et al. Observation and uses of position-space Bloch oscillations in an ultracold gas. Phys. Rev. Lett. 120, 213201 (2018).

    ADS 

    Google Scholar
     

  • Ferrari, G., Poli, N., Sorrentino, F. & Tino, G. Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006).

    ADS 

    Google Scholar
     

  • Xu, V. et al. Probing gravity by holding atoms for 20 seconds. Science 366, 745–749 (2019).

    ADS 

    Google Scholar
     

  • Parker, R., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 360, 191–195 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Morel, L., Yao, Z., Cladé, P. & Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588, 61–65 (2020).

    ADS 

    Google Scholar
     

  • Price, H. & Cooper, N. Mapping the Berry curvature from semiclassical dynamics in optical lattices. Phys. Rev. A 85, 033620 (2012).

    ADS 

    Google Scholar
     

  • Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).


    Google Scholar
     

  • Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A. & Lederer, F. Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752 (1999).

    ADS 

    Google Scholar
     

  • Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999).

    ADS 

    Google Scholar
     

  • Sanchis-Alepuz, H., Kosevich, Y. & Sánchez-Dehesa, J. Acoustic analogue of electronic Bloch oscillations and resonant Zener tunneling in ultrasonic superlattices. Phys. Rev. Lett. 98, 134301 (2007).

    ADS 

    Google Scholar
     

  • Block, A. et al. Bloch oscillations in plasmonic waveguide arrays. Nat. Commun. 5, 3843 (2014).

    ADS 

    Google Scholar
     

  • Morsch, O., Müller, J. H., Cristiani, M., Ciampini, D. & Arimondo, E. Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices. Phys. Rev. Lett. 87, 140402 (2001).

    ADS 

    Google Scholar
     

  • Gustavsson, M. et al. Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett. 100, 080404 (2008).

    ADS 

    Google Scholar
     

  • Eckstein, M. & Werner, P. Damping of Bloch oscillations in the Hubbard model. Phys. Rev. Lett. 107, 186406 (2011).

    ADS 

    Google Scholar
     

  • Meinert, F. et al. Interaction-induced quantum phase revivals and evidence for the transition to the quantum chaotic regime in 1D atomic Bloch oscillations. Phys. Rev. Lett. 112, 193003 (2014).

    ADS 

    Google Scholar
     

  • Preiss, P. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Corrielli, G., Crespi, A., Della Valle, G., Longhi, S. & Osellame, R. Fractional Bloch oscillations in photonic lattices. Nat. Commun. 4, 1555 (2013).

    ADS 

    Google Scholar
     

  • Zhang, W. et al. Observation of Bloch oscillations dominated by effective anyonic particle statistics. Nat. Commun. 13, 2392 (2022).

    ADS 

    Google Scholar
     

  • Bloch, F. Superfluidity in a ring. Phys. Rev. A 7, 2187 (1973).

    ADS 

    Google Scholar
     

  • Haldane, F. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981).

    ADS 

    Google Scholar
     

  • Gangardt, D. & Kamenev, A. Bloch oscillations in a one-dimensional spinor gas. Phys. Rev. Lett. 102, 070402 (2009).

    ADS 

    Google Scholar
     

  • Schecter, M., Gangardt, D. & Kamenev, A. Dynamics and Bloch oscillations of mobile impurities in one-dimensional quantum liquids. Ann. Phys. 327, 639–670 (2012).

    ADS 

    Google Scholar
     

  • Pitaevskii, L. On the momentum of solitons and vortex rings in a superfluid. J. Exp. Theor. Phys. 119, 1097 (2014).

    ADS 

    Google Scholar
     

  • Grusdt, F., Shashi, A., Abanin, D. & Demler, E. Bloch oscillations of bosonic lattice polarons. Phys. Rev. A 90, 063610 (2014).

    ADS 

    Google Scholar
     

  • Will, M. & Fleischhauer, M. Dynamics of polaron formation in 1D Bose gases in the strong-coupling regime. New J. Phys. 25, 083043 (2023).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Schecter, M., Gangardt, D. & Kamenev, A. Quantum impurities: from mobile Josephson junctions to depletons. New J. Phys. 18, 065002 (2016).

    ADS 

    Google Scholar
     

  • Petković, A. & Ristivojevic, Z. Dynamics of a mobile impurity in a one-dimensional Bose liquid. Phys. Rev. Lett. 117, 105301 (2016).

    ADS 

    Google Scholar
     

  • Meinert, F. et al. Bloch oscillations in the absence of a lattice. Science 356, 945–948 (2017).

    ADS 

    Google Scholar
     

  • Zhao, L.-C. et al. Spin soliton with a negative-positive mass transition. Phys. Rev. A 101, 043621 (2020).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Yu, X. & Blakie, P. Propagating ferrodark solitons in a superfluid: exact solutions and anomalous dynamics. Phys. Rev. Lett. 128, 125301 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Bresolin, S., Roy, A., Ferrari, G., Recati, A. & Pavloff, N. Oscillating solitons and ac Josephson effect in ferromagnetic Bose-Bose mixtures. Phys. Rev. Lett. 130, 220403 (2023).

    ADS 

    Google Scholar
     

  • Meng, L.-Z., Luo, X.-W. & Zhao, L.-C. Self-adapted Josephson oscillation of dark-bright solitons under constant forces. Preprint at https://arxiv.org/abs/2501.15841 (2025).

  • Kosevich, A., Ivanov, B. & Kovalev, A. Magnetic solitons. Phys. Rep. 194, 117 (1990).

    ADS 

    Google Scholar
     

  • Qu, C., Pitaevskii, L. & Stringari, S. Magnetic solitons in a binary Bose-Einstein condensate. Phys. Rev. Lett. 116, 160402 (2016).

    ADS 

    Google Scholar
     

  • Congy, T., Kamchatnov, A. & Pavloff, N. Dispersive hydrodynamics of nonlinear polarization waves in two-component Bose–Einstein condensates. SciPost Phys. 1, 006 (2016).

    ADS 

    Google Scholar
     

  • Chai, X. et al. Magnetic solitons in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 125, 030402 (2020).

    ADS 

    Google Scholar
     

  • Farolfi, A., Trypogeorgos, D., Mordini, C., Lamporesi, G. & Ferrari, G. Observation of magnetic solitons in two-component Bose-Einstein condensates. Phys. Rev. Lett. 125, 030401 (2020).

    ADS 

    Google Scholar
     

  • Chai, X., You, L. & Raman, C. Magnetic solitons in an immiscible two-component Bose-Einstein condensate. Phys. Rev. A 105, 013313 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Zou, Y.-Q. et al. Optical control of the density and spin spatial profiles of a planar Bose gas. J. Phys. B 54, 08LT01 (2021).


    Google Scholar
     

  • Kosevich, A. Bloch oscillations of magnetic solitons as an example of dynamical localization of quasiparticles in a uniform external field. Low Temp. Phys. 27, 513–541 (2001).

    ADS 

    Google Scholar
     

  • Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  • Isoshima, T., Nakahara, M., Ohmi, T. & Machida, K. Creation of a persistent current and vortex in a Bose-Einstein condensate of alkali-metal atoms. Phys. Rev. A 61, 063610 (2000).

    ADS 

    Google Scholar
     

  • Leanhardt, A. et al. Imprinting vortices in a Bose-Einstein condensate using topological phases. Phys. Rev. Lett. 89, 190403 (2002).

    ADS 

    Google Scholar
     

  • Wright, K., Blakestad, R., Lobb, C., Phillips, W. & Campbell, G. Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys. Rev. Lett. 110, 025302 (2013).

    ADS 

    Google Scholar
     

  • Corman, L. et al. Quench-induced supercurrents in an annular Bose gas. Phys. Rev. Lett. 113, 135302 (2014).

    ADS 

    Google Scholar
     

  • Eckel, S., Jendrzejewski, F., Kumar, A., Lobb, C. & Campbell, G. Interferometric measurement of the current-phase relationship of a superfluid weak link. Phys. Rev. X 4, 031052 (2014).


    Google Scholar
     

  • Hamner, C., Chang, J., Engels, P. & Hoefer, M. Generation of dark-bright soliton trains in superfluid-superfluid counterflow. Phys. Rev. Lett. 106, 065302 (2011).

    ADS 

    Google Scholar
     

  • Yan, D. et al. Multiple dark-bright solitons in atomic Bose-Einstein condensates. Phys. Rev. A 84, 053630 (2011).

    ADS 

    Google Scholar
     

  • Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002).


    Google Scholar
     

  • Amico, L. et al. Colloquium: atomtronic circuits: from many-body physics to quantum technologies. Rev. Mod. Phys. 94, 041001 (2022).

    ADS 

    Google Scholar
     

  • Li, X.-L., Gong, M., Wang, Y.-H. & Zhao, L.-C. Manipulating topological charges via engineering zeros of wave functions. Preprint at https://arxiv.org/abs/2412.07101 (2024).

  • Ville, J. et al. Loading and compression of a single two-dimensional Bose gas in an optical accordion. Phys. Rev. A 95, 013632 (2017).

    ADS 

    Google Scholar
     

  • Bakkali-Hassani, B. et al. Realization of a Townes soliton in a two-component planar Bose gas. Phys. Rev. Lett. 127, 023603 (2021).

    ADS 

    Google Scholar
     

  • Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605 (1963).

    ADS 
    MathSciNet 

    Google Scholar
     

  • van Kempen, E., Kokkelmans, S., Heinzen, D. & Verhaar, B. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 093201 (2002).

    ADS 

    Google Scholar
     

  • Zou, Y.-Q. et al. Magnetic dipolar interaction between hyperfine clock states in a planar alkali Bose gas. Phys. Rev. Lett. 125, 233604 (2020).

    ADS 

    Google Scholar
     

  • De, S. et al. Quenched binary Bose-Einstein condensates: spin-domain formation and coarsening. Phys. Rev. A 89, 033631 (2014).

    ADS 

    Google Scholar
     

  • Aidelsburger, M. et al. Relaxation dynamics in the merging of N independent condensates. Phys. Rev. Lett. 119, 190403 (2017).

    ADS 

    Google Scholar