• Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    ADS 

    Google Scholar
     

  • Scalapino, D. J., Loh, E. & Hirsch, J. E. Fermi-surface instabilities and superconducting d-wave pairing. Phys. Rev. B 35, 6694–6698 (1987).

    ADS 

    Google Scholar
     

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS 

    Google Scholar
     

  • Gros, C., Joynt, R. & Rice, T. M. Antiferromagnetic correlations in almost-localized Fermi liquids. Phys. Rev. B 36, 381–393 (1987).

    ADS 

    Google Scholar
     

  • Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    ADS 

    Google Scholar
     

  • Zhang, F. C., Gros, C., Rice, T. M. & Shiba, H. A renormalised Hamiltonian approach to a resonant valence bond wavefunction. Supercond. Sci. Technol. 1, 36 (1988).

    ADS 

    Google Scholar
     

  • Kotliar, G. & Liu, J. Superexchange mechanism and d-wave superconductivity. Phys. Rev. B 38, 5142–5145 (1988).

    ADS 

    Google Scholar
     

  • Schrieffer, J. R., Wen, X.-G. & Zhang, S.-C. Spin-bag mechanism of high-temperature superconductivity. Phys. Rev. Lett. 60, 944–947 (1988).

    ADS 

    Google Scholar
     

  • Monthoux, P., Balatsky, A. V. & Pines, D. Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Phys. Rev. Lett. 67, 3448–3451 (1991).

    ADS 

    Google Scholar
     

  • Monthoux, P., Balatsky, A. V. & Pines, D. Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides. Phys. Rev. B 46, 14803–14817 (1992).

    ADS 

    Google Scholar
     

  • Dai, P., Mook, H. A., Hunt, R. D. & Doğan, F. Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+x. Phys. Rev. B 63, 054525 (2001).

    ADS 

    Google Scholar
     

  • Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755 (2004).


    Google Scholar
     

  • Anderson, P. W. Physics of the resonating valence bond (pseudogap) state of the doped Mott insulator: spin-charge locking. Phys. Rev. Lett. 96, 017001 (2006).

    ADS 

    Google Scholar
     

  • Edegger, B., Muthukumar, V. N. & Gros, C. Gutzwiller-RVB theory of high-temperature superconductivity: results from renormalized mean-field theory and variational Monte Carlo calculations. Adv. Phys. 56, 927–1033 (2007).

    ADS 

    Google Scholar
     

  • Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nat. Phys. 5, 217–221 (2009).


    Google Scholar
     

  • Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).


    Google Scholar
     

  • Dean, M. P. M. et al. Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013).

    ADS 

    Google Scholar
     

  • Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).

    ADS 

    Google Scholar
     

  • Fowlie, J. et al. Intrinsic magnetism in superconducting infinite-layer nickelates. Nat. Phys. 18, 1043–1047 (2022).


    Google Scholar
     

  • Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

    ADS 

    Google Scholar
     

  • Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    ADS 

    Google Scholar
     

  • White, B., Thompson, J. & Maple, M. Unconventional superconductivity in heavy-fermion compounds. Physica C 514, 246–278 (2015).

    ADS 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    ADS 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).


    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    ADS 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS 

    Google Scholar
     

  • Ciorciaro, L. et al. Kinetic magnetism in triangular moiré materials. Nature 623, 509–513 (2023).

    ADS 

    Google Scholar
     

  • Tang, Y. et al. Evidence of frustrated magnetic interactions in a Wigner–Mott insulator. Nat. Nanotechnol. 18, 233–237 (2023).

    ADS 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

  • Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    ADS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS 

    Google Scholar
     

  • Migdal, A. B. Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 34, 996–1001 (1958).


    Google Scholar
     

  • Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696–702 (1960).

    MathSciNet 

    Google Scholar
     

  • Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85. Science 288, 1234–1237 (2000).

    ADS 

    Google Scholar
     

  • Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

    ADS 

    Google Scholar
     

  • Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doğan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    ADS 

    Google Scholar
     

  • Wakimoto, S. et al. Disappearance of antiferromagnetic spin excitations in overdoped La2−xSrxCuO4. Phys. Rev. Lett. 98, 247003 (2007).

    ADS 

    Google Scholar
     

  • Braicovich, L. et al. Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant x-ray scattering. Phys. Rev. Lett. 102, 167401 (2009).

    ADS 

    Google Scholar
     

  • Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic x-ray scattering. Phys. Rev. Lett. 104, 077002 (2010).

    ADS 

    Google Scholar
     

  • Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    ADS 

    Google Scholar
     

  • Chaix, L. et al. Resonant inelastic x-ray scattering studies of magnons and bimagnons in the lightly doped cuprate La2−xSrxCuO4. Phys. Rev. B 97, 155144 (2018).

    ADS 

    Google Scholar
     

  • Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    ADS 

    Google Scholar
     

  • Fujita, M. et al. Progress in neutron scattering studies of spin excitations in high-Tc cuprates. J. Phys. Soc. Jpn 81, 011007 (2012).

    ADS 

    Google Scholar
     

  • Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: transient dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).


    Google Scholar
     

  • Koepsell, J. et al. Imaging magnetic polarons in the doped Fermi–Hubbard model. Nature 572, 358–362 (2019).

    ADS 

    Google Scholar
     

  • Prichard, M. L. et al. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature 629, 323–328 (2024).

    ADS 

    Google Scholar
     

  • Lebrat, M. et al. Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator. Nature 629, 317–322 (2024).

    ADS 

    Google Scholar
     

  • Hartke, T., Oreg, B., Turnbaugh, C., Jia, N. & Zwierlein, M. Direct observation of nonlocal fermion pairing in an attractive Fermi–Hubbard gas. Science 381, 82–86 (2023).

    ADS 

    Google Scholar
     

  • Schirotzek, A., Wu, C.-H., Sommer, A. & Zwierlein, M. W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009).

    ADS 

    Google Scholar
     

  • Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    ADS 

    Google Scholar
     

  • Kohstall, C. et al. Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature 485, 615–618 (2012).

    ADS 

    Google Scholar
     

  • Cetina, M. et al. Ultrafast many-body interferometry of impurities coupled to a Fermi sea. Science 354, 96–99 (2016).

    ADS 

    Google Scholar
     

  • Yan, Z. Z., Ni, Y., Robens, C. & Zwierlein, M. W. Bose polarons near quantum criticality. Science 368, 190–194 (2020).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ness, G. et al. Observation of a smooth polaron–molecule transition in a degenerate Fermi gas. Phys. Rev. X 10, 041019 (2020).


    Google Scholar
     

  • Parish, M. M. & Levinsen, J. Highly polarized Fermi gases in two dimensions. Phys. Rev. A 87, 033616 (2013).

    ADS 

    Google Scholar
     

  • Jørgensen, N. B. et al. Observation of attractive and repulsive polarons in a Bose–Einstein condensate. Phys. Rev. Lett. 117, 055302 (2016).

    ADS 

    Google Scholar
     

  • Hu, M.-G. et al. Bose polarons in the strongly interacting regime. Phys. Rev. Lett. 117, 055301 (2016).

    ADS 

    Google Scholar
     

  • Darkwah Oppong, N. et al. Observation of coherent multiorbital polarons in a two-dimensional Fermi gas. Phys. Rev. Lett. 122, 193604 (2019).

    ADS 

    Google Scholar
     

  • Duda, M. et al. Transition from a polaronic condensate to a degenerate Fermi gas of heteronuclear molecules. Nat. Phys. 19, 720–725 (2023).


    Google Scholar
     

  • Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    ADS 

    Google Scholar
     

  • Navarro, I. M., Weitenberg, C., Sengstock, K. & Demler, E. Exploring kinetically induced bound states in triangular lattices with ultracold atoms: spectroscopic approach. SciPost Phys. 16, 081 (2024).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Vaknin, D. et al. Antiferromagnetism in La2CuO4−y. Phys. Rev. Lett. 58, 2802 (1987).

    ADS 

    Google Scholar
     

  • Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x. Phys. Rev. B 61, 14773–14786 (2000).

    ADS 

    Google Scholar
     

  • Fong, H. et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ. Nature 398, 588–591 (1999).

    ADS 

    Google Scholar
     

  • Chevy, F. Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006).

    ADS 

    Google Scholar
     

  • Mora, C. & Chevy, F. Ground state of a tightly bound composite dimer immersed in a Fermi sea. Phys. Rev. A 80, 033607 (2009).

    ADS 

    Google Scholar
     

  • Punk, M., Dumitrescu, P. T. & Zwerger, W. Polaron-to-molecule transition in a strongly imbalanced Fermi gas. Phys. Rev. A 80, 053605 (2009).

    ADS 

    Google Scholar
     

  • Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter (Oxford Univ. Press, 1984).

  • Brown, P. T. et al. Spin-imbalance in a 2D Fermi–Hubbard system. Science 357, 1385–1388 (2017).

    ADS 
    MathSciNet 

    Google Scholar