• Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NV-center under pressure. Phys. Rev. Lett. 112, 047601 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Bhattacharyya, P. et al. Imaging the meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed nv centers. Science 366, 1359–1362 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in a diamond anvil cell. Nat. Commun. 15, 8843 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steele, L. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).

    ADS 

    Google Scholar
     

  • Shang, Y.-X. et al. Magnetic sensing inside a diamond anvil cell via nitrogen-vacancy center spins. Chin. Phys. Lett. 36, 086201 (2019).

    ADS 

    Google Scholar
     

  • Hamlin, J. J. & Zhou, B. B. Extreme diamond-based quantum sensors. Science 366, 1312–1313 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Shelton, D. P., Cabriales, W. & Salamat, A. Magnetometry in a diamond anvil cell using nitrogen vacancy centers in a nanodiamond ensemble. Rev. Sci. Instrum. 95, 083901 (2024).

    PubMed 

    Google Scholar
     

  • Ho, K. O. et al. Probing local pressure environment in anvil cells with nitrogen-vacancy (n-v-) centers in diamond. Phys. Rev. Appl. 13, 024041 (2020).

    ADS 

    Google Scholar
     

  • Dai, J.-H. et al. Optically detected magnetic resonance of diamond nitrogen-vacancy centers under megabar pressures. Chin. Phys. Lett. 39, 117601 (2022).

    ADS 

    Google Scholar
     

  • Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).


    Google Scholar
     

  • Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).

    ADS 

    Google Scholar
     

  • Wen, J. et al. Imaging the Meissner effect in pressurized bilayer nickelate with integrated multi-parameter quantum sensor. National Science Review, nwaf268 (Oxford University Press, 2025)

  • Wang, Z. et al. Ac sensing using nitrogen-vacancy centers in a diamond anvil cell up to 6 GPa. Phys. Rev. Appl. 16, 054014 (2021).

    ADS 

    Google Scholar
     

  • Vaidya, S., Gao, X., Dikshit, S., Aharonovich, I. & Li, T. Quantum sensing and imaging with spin defects in hexagonal boron nitride. Adv. Phys.: X 8, 2206049 (2023).


    Google Scholar
     

  • Azzam, S. I., Parto, K. & Moody, G. Prospects and challenges of quantum emitters in 2d materials. Appl. Phys. Lett. 118, 240502 (2021).

    ADS 

    Google Scholar
     

  • Ren, S., Tan, Q. & Zhang, J. Review on the quantum emitters in two-dimensional materials. J. Semicond. 40, 071903 (2019).

    ADS 

    Google Scholar
     

  • Su, C. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).


    Google Scholar
     

  • Aharonovich, I., Tetienne, J.-P. & Toth, M. Quantum emitters in hexagonal boron nitride. Nano Lett. 22, 9227–9235 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naclerio, A. E. & Kidambi, P. R. A review of scalable hexagonal boron nitride (h-bn) synthesis for present and future applications. Adv. Mater. 35, 2207374 (2023).


    Google Scholar
     

  • Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S., Thiering, G., Udvarhelyi, P., Ivády, V. & Gali, A. Carbon defect qubit in two-dimensional ws2. Nat. Commun. 13, 1210 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X. et al. Nanotube spin defects for omnidirectional magnetic field sensing. Nat. Commun. 15, 7697 (2024).

  • Kumar, P. et al. Magnetic imaging with spin defects in hexagonal boron nitride. Phys. Rev. Appl. 18, L061002 (2022).

    ADS 

    Google Scholar
     

  • Das, S. et al. Quantum sensing of spin dynamics using boron-vacancy centers in hexagonal boron nitride. Phys. Rev. Lett. 133, 166704 (2024).

    PubMed 

    Google Scholar
     

  • Lyu, X. et al. Strain quantum sensing with spin defects in hexagonal boron nitride. Nano Lett. 22, 6553–6559 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Zabelotsky, T. et al. Creation of boron vacancies in hexagonal boron nitride exfoliated from bulk crystals for quantum sensing. ACS Appl. Nano Mater. 6, 21671–21678 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Huang, Y. L., Chen, W. & Wee, A. T. Two-dimensional magnetic transition metal chalcogenides. SmartMat 2, 139–153 (2021).


    Google Scholar
     

  • Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udvarhelyi, P. et al. A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields. npj Comput. Mater. 9, 150 (2023).

    ADS 

    Google Scholar
     

  • Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celeste, A., Borondics, F. & Capitani, F. Hydrostaticity of pressure-transmitting media for high-pressure infrared spectroscopy. High. Press. Res. 39, 608–618 (2019).

    ADS 

    Google Scholar
     

  • You, S., Chen, L. & Jin, C. Hydrostaticity of pressure media in diamond anvil cells. Chin. Phys. Lett. 26, 204–206 (2009).


    Google Scholar
     

  • Tateiwa, N. & Haga, Y. Appropriate pressure-transmitting media for cryogenic experiment in the diamond anvil cell up to 10 GPa. In Journal of Physics: Conference Series, vol. 215, 012178 (IOP Publishing, 2010).

  • Gong, R. et al. Isotope engineering for spin defects in van der Waals materials. Nat. Commun. 15, 104 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clua-Provost, T. et al. Isotopic control of the boron-vacancy spin defect in hexagonal boron nitride. Phys. Rev. Lett. 131, 126901 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Janzen, E. et al. Boron and nitrogen isotope effects on hexagonal boron nitride properties. Adv. Mater. 36, 2306033 (2024).


    Google Scholar
     

  • Sasaki, K., Taniguchi, T. & Kobayashi, K. Nitrogen isotope effects on boron vacancy quantum sensors in hexagonal boron nitride. Appl. Phys. Express 16, 095003 (2023).

    ADS 

    Google Scholar
     

  • Sterer, E., Pasternak, M. & Taylor, R. A multipurpose miniature diamond anvil cell. Rev. Sci. Instrum. 61, 1117–1119 (1990).

    ADS 

    Google Scholar
     

  • Plo, J. et al. Isotope substitution and polytype control for point defects identification: the case of the ultraviolet color center in hexagonal boron nitride. Phys. Rev. X 15, 021045 (2025).

  • Klotz, S., Chervin, J., Munsch, P. & Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D: Appl. Phys. 42, 075413 (2009).

    ADS 

    Google Scholar
     

  • Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D. & Jacobsen, S. D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26–32 (2007).

    ADS 

    Google Scholar
     

  • Takemura, K. Hydrostaticity in high-pressure experiments: some general observations and guidelines for high-pressure experimenters. High. Press. Res. 41, 155–174 (2021).

    ADS 

    Google Scholar
     

  • Barson, M. S. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Han, B. et al. Correlatively dependent lattice and electronic structural evolutions in compressed monolayer tungsten disulfide. J. Phys. Chem. Lett. 8, 941–947 (2017).

    PubMed 

    Google Scholar
     

  • Proctor, J. E. et al. High-pressure Raman spectroscopy of graphene. Phys. Rev. B—Condens. Matter Mater. Phys. 80, 073408 (2009).

    ADS 

    Google Scholar
     

  • Pei, S., Wang, Z. & Xia, J. High-pressure studies of 2d materials and heterostructures: a review. Mater. Des. 213, 110363 (2022).


    Google Scholar
     

  • Liu, Z. et al. Temperature-dependent spin-phonon coupling of boron-vacancy centers in hexagonal boron nitride. Phys. Rev. B 111, 024108 (2025).


    Google Scholar
     

  • Melendez, A. L. et al. Nanoscale quantum imaging of spin dynamics using a hybrid 2d/3d system. Preprint at arXiv https://doi.org/10.48550/arXiv.2504.09432 (2025).

  • Sun, H. et al. Room-temperature hybrid 2d-3d quantum spin system for enhanced magnetic sensing and many-body dynamics. Preprint at arXiv https://doi.org/10.48550/arXiv.2504.10815 (2025).

  • Yang, T. et al. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale 14, 5239–5244 (2022).

    PubMed 

    Google Scholar
     

  • Curie, D. et al. Correlative nanoscale imaging of strained hBN spin defects. ACS Appl. Mater. Interfaces 14, 41361–41368 (2022).

    PubMed 

    Google Scholar
     

  • Lee, W. et al. Intrinsic high-fidelity spin polarization of charged vacancies in hexagonal boron nitride. Phys. Rev. Lett. 134, 096202 (2025).

  • Clua-Provost, T. et al. Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride. Phys. Rev. B 110, 014104 (2024).


    Google Scholar
     

  • Qian, C. et al. Unveiling the zero-phonon line of the boron vacancy center by cavity-enhanced emission. Nano Lett. 22, 5137–5142 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Fröch, J. E. et al. Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett. 21, 6549–6555 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Nonahal, M. et al. Coupling spin defects in hexagonal boron nitride to titanium dioxide ring resonators. Nanoscale 14, 14950–14955 (2022).

    PubMed 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    PubMed 

    Google Scholar
     

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2d materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Recent progress on 2d magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews8 (2021).

  • Wang, Q. H. et al. The magnetic genome of two-dimensional van der Waals materials. ACS nano 16, 6960–7079 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Conner, C. et al. Enhanced antiferromagnetic phase in metastable self-intercalated cr1+xTe2 compounds. Preprint at arXiv https://doi.org/10.48550/arXiv.2411.13721 (2024).

  • Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Coughlin, A. L. et al. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano 14, 15256–15266 (2020).

    PubMed 

    Google Scholar
     

  • Coughlin, A. L. et al. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett. 21, 9517–9525 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Lin, Z. et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator cr 2 Ge 2 Te 6. Phys. Rev. Mater. 2, 051004 (2018).

    ADS 

    Google Scholar
     

  • Sun, Y. et al. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Applied Physics Letters 112, 072409 (2018).

  • Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).

    PubMed 

    Google Scholar
     

  • Ren, X. et al. Possible strain-induced enhancement of the superconducting onset transition temperature in infinite-layer nickelates. Commun. Phys. 6, 341 (2023).


    Google Scholar
     

  • Mu, Z. et al. Magnetic imaging under high pressure with a spin-based quantum sensor integrated in a van der Waals heterostructure. Preprint at arXiv https://doi.org/10.48550/arXiv.2501.03640 (2025).

  • Coughlin, A. L. et al. Extreme air sensitivity and nonself-limited oxidation of two-dimensional magnetic tellurides. ACS Mater. Lett. 5, 1945–1953 (2023).


    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. b 59, 1758 (1999).

    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS 
    PubMed 

    Google Scholar
     

  • Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method. J. Phys.: Condens. Matter 9, 767 (1997).

    ADS 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    ADS 

    Google Scholar
     

  • Liu, Y., Kwon, S., de Coster, G. J., Lake, R. K. & Neupane, M. R. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater. 6, 084004 (2022).


    Google Scholar