• Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Bauer, G. E., Saitoh, E. & Van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Hirsch, J. Overlooked contribution to the Hall effect in ferromagnetic metals. Phys. Rev. B 60, 14787 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Han, W., Maekawa, S. & Xie, X.-C. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Gish, J. T., Lebedev, D., Song, T. W., Sangwan, V. K. & Hersam, M. C. Van der Waals opto-spintronics. Nat. Electron. 7, 336–347 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Rezende, S. M. Fundamentals of Magnonics Vol. 969 (Springer, 2020).

  • Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

  • Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kukreja, R. et al. X-ray detection of transient magnetic moments induced by a spin current in Cu. Phys. Rev. Lett. 115, 096601 (2015).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. Direct detection of pure ac spin current by X-ray pump-probe measurements. Phys. Rev. Lett. 117, 076602 (2016).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 43, 264002 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Condens. Matter Phys. 26, 343202 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kehlberger, A. et al. Length scale of the spin Seebeck effect. Phys. Rev. Lett. 115, 096602 (2015).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Guo, E.-J. et al. Influence of thickness and interface on the low-temperature enhancement of the spin Seebeck effect in YIG films. Phys. Rev. X 6, 031012 (2016).


    Google Scholar
     

  • Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haverkort, M. W. Theory of resonant inelastic X-ray scattering by collective magnetic excitations. Phys. Rev. Lett. 105, 167404 (2010).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Olsson, K. S. et al. Pure spin current and magnon chemical potential in a nonequilibrium magnetic insulator. Phys. Rev. X 10, 021029 (2020).

    CAS 

    Google Scholar
     

  • McLaughlin, R., Sun, D., Zhang, C., Groesbeck, M. & Vardeny, Z. V. Optical detection of transverse spin-Seebeck effect in permalloy film using Sagnac interferometer microscopy. Phys. Rev. B 95, 180401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pelliciari, J. et al. Tuning spin excitations in magnetic films by confinement. Nat. Mater. 20, 188–193 (2021).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Site-specific electronic and magnetic excitations of the skyrmion material Cu2OSeO3. Commun. Phys. 5, 156 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bisogni, V. et al. Femtosecond dynamics of momentum-dependent magnetic excitations from resonant inelastic X-ray scattering in CaCu2O3. Phys. Rev. Lett. 112, 147401 (2014).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Jia, C. et al. Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering. Nat. Commun. 5, 3314 (2014).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Robarts, H. C. et al. Dynamical spin susceptibility in La2CuO4 studied by resonant inelastic X-ray scattering. Phys. Rev. B 103, 224427 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, C., Wohlfeld, K., Wang, Y., Moritz, B. & Devereaux, T. P. Using RIXS to uncover elementary charge and spin excitations. Phys. Rev. X 6, 021020 (2016).


    Google Scholar
     

  • Elnaggar, H. et al. Magnetic contrast at spin-flip excitations: an advanced X-ray spectroscopy tool to study magnetic-ordering. ACS Appl. Mater. Interfaces. 11, 36213–36220 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Princep, A. J. et al. The full magnon spectrum of yttrium iron garnet. npj Quantum Mater. 2, 63 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Single- and multimagnon dynamics in antiferromagnetic α − Fe2O3 thin films. Phys. Rev. X 13, 011012 (2023).

    CAS 

    Google Scholar
     

  • Nambu, Y. et al. Observation of magnon polarization. Phys. Rev. Lett. 125, 027201 (2020).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, H. et al. Role of damping in spin Seebeck effect in yttrium iron garnet thin films. Sci. Adv. 3, e1601614 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Uchida, K. et al. Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. J. Appl. Phys. 111, 103903 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jaworski, C. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Kikkawa, T. et al. Critical suppression of spin Seebeck effect by magnetic fields. Phys. Rev. B 92, 064413 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lee, W. et al. Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors. Nat. Phys. 10, 883–889 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    Article 
    MathSciNet 
    ADS 
    CAS 

    Google Scholar
     

  • Iguchi, R., Uchida, K.-i, Daimon, S. & Saitoh, E. Concomitant enhancement of the longitudinal spin Seebeck effect and the thermal conductivity in a Pt/YIG/Pt system at low temperatures. Phys. Rev. B 95, 174401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Baron, A. Q. R. Recent progress in non-resonant inelastic X-ray scattering. In Proc. 11th International Conference on Inelastic X-Ray Scattering (IEEE, 2019).

  • Adachi, H. et al. Gigantic enhancement of spin Seebeck effect by phonon drag. Appl. Phys. Lett. 97, 252506 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Rezende, S. M. et al. Magnon spin-current theory for the longitudinal spin-Seebeck effect. Phys. Rev. B 89, 014416 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A. & van Wees, B. J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rezende, S. M., Azevedo, A. & Rodríguez-Suárez, R. L. Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators. J. Phys. D Appl. Phys. 51, 174004 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Boona, S. R. & Heremans, J. P. Magnon thermal mean free path in yttrium iron garnet. Phys. Rev. B 90, 064421 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jamison, J. S. et al. Long lifetime of thermally excited magnons in bulk yttrium iron garnet. Phys. Rev. B 100, 134402 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rückriegel, A., Kopietz, P., Bozhko, D. A., Serga, A. A. & Hillebrands, B. Magnetoelastic modes and lifetime of magnons in thin yttrium iron garnet films. Phys. Rev. B 89, 184413 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wei, X.-Y. et al. Giant magnon spin conductivity in ultrathin yttrium iron garnet films. Nat. Mater. 21, 1352–1356 (2022).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Barker, J. & Bauer, G. E. W. Thermal spin dynamics of yttrium iron garnet. Phys. Rev. Lett. 117, 217201 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Barker, J. & Bauer, G. E. W. Semiquantum thermodynamics of complex ferrimagnets. Phys. Rev. B 100, 140401 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vasili, H. B. et al. Direct observation of multivalent states and 4f → 3d charge transfer in Ce-doped yttrium iron garnet thin films. Phys. Rev. B 96, 014433 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dvorak, J., Jarrige, I., Bisogni, V., Coburn, S. & Leonhardt, W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 87, 115109 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Manley, M. E. et al. Intrinsic anharmonic localization in thermoelectric PbSe. Nat. Commun. 10, 1928 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Boschini, F. et al. Dynamic electron correlations with charge order wavelength along all directions in the copper oxide plane. Nat. Commun. 12, 597 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Nambu, Y. & Shamoto, S. Neutron scattering study on yttrium iron garnet for spintronics. J. Phys. Soc. Jpn. 90, 081002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tomiyasu, K. et al. Coulomb correlations intertwined with spin and orbital excitations in LaCoO3. Phys. Rev. Lett. 119, 196402 (2017).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Gomez-Perez, J. M., Vélez, S., Hueso, L. E. & Casanova, F. Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12. Phys. Rev. B 101, 184420 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganzhorn, K. et al. Temperature dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures. AIP Adv. 7, 085102 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Prakash, A. et al. Evidence for the role of the magnon energy relaxation length in the spin Seebeck effect. Phys. Rev. B 97, 020408 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qu, D., Huang, S. Y., Hu, J., Wu, R. & Chien, C. L. Intrinsic spin Seebeck effect in Au/YIG. Phys. Rev. Lett. 110, 067206 (2013).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Cunha, R. O., Padrón-Hernández, E., Azevedo, A. & Rezende, S. M. Controlling the relaxation of propagating spin waves in yttrium iron garnet/Pt bilayers with thermal gradients. Phys. Rev. B 87, 184401 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Shan, J. et al. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. S.-L. & Zhang, S. Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett. 109, 096603 (2012).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, S. S.-L. & Zhang, S. Spin convertance at magnetic interfaces. Phys. Rev. B 86, 214424 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rezende, S. M. & López Ortiz, J. C. Thermal properties of magnons in yttrium iron garnet at elevated magnetic fields. Phys. Rev. B 91, 104416 (2015).

    Article 
    ADS 

    Google Scholar
     

  • de Groot, F. M. F., Kuiper, P. & Sawatzky, G. A. Local spin-flip spectral distribution obtained by resonant X-ray Raman scattering. Phys. Rev. B 57, 14584–14587 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Adachi, H., Uchida, K.-i, Saitoh, E. & Maekawa, S. Theory of the spin Seebeck effect. Rep. Prog. Phys. 76, 036501 (2013).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Rezende, S. M., Rodríguez-Suárez, R. L., Cunha, R. O., López Ortiz, J. C. & Azevedo, A. Bulk magnon spin current theory for the longitudinal spin Seebeck effect. J. Magn. Magn. Mater. 400, 171–177 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rezende, S. M., Rodríguez-Suárez, R. L., Lopez Ortiz, J. C. & Azevedo, A. Thermal properties of magnons and the spin Seebeck effect in yttrium iron garnet/normal metal hybrid structures. Phys. Rev. B 89, 134406 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ratkovski, D. R., Balicas, L., Bangura, A., Machado, F. L. A. & Rezende, S. M. Thermal transport in yttrium iron garnet at very high magnetic fields. Phys. Rev. B 101, 174442 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar