• Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cirac, J. I., Ekert, A., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Baumgratz, T. & Datta, A. Quantum enhanced estimation of a multidimensional field. Phys. Rev. Lett. 116, 030801 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photon. 12, 724–733 (2018).

    Article 
    ADS 

    Google Scholar
     

  • A, G. Q. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shen, M. et al. Photonic link from single-flux-quantum circuits to room temperature. Nat. Photon. 18, 371–378 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Fu, W. et al. Cavity electro-optic circuit for microwave-to-optical conversion in the quantum ground state. Phys. Rev. A 103, 053504 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166–172 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Article 

    Google Scholar
     

  • Zhao, H., Chen, W. D., Kejriwal, A. & Mirhosseini, M. Quantum-enabled microwave-to-optical transduction via silicon nanomechanics. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01874-8 (2025).

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article 

    Google Scholar
     

  • Kumar, A. et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms. Nature 615, 614–619 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rochman, J., Xie, T., Bartholomew, J. G., Schwab, K. & Faraon, A. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators. Nat. Commun. 14, 1153 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y.-H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical signal conversion. Phys. Rev. A 100, 033807 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Borówka, S., Pylypenko, U., Mazelanik, M. & Parniak, M. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms. Nat. Photon. 18, 32–38 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Delaney, R. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489–493 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Arnold, G. et al. All-optical superconducting qubit readout. Nat. Phys. 21, 393–400 (2025).

  • van Thiel, T. C. et al. Optical readout of a superconducting qubit using a piezo-optomechanical transducer. Nat. Phys. 21, 401–405 (2025).

  • Sahu, R. et al. Entangling microwaves with light. Science 380, 718–721 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Meesala, S. et al. Non-classical microwave–optical photon pair generation with a chip-scale transducer. Nat. Phys. 20, 871–877 (2024).

    Article 

    Google Scholar
     

  • Meesala, S. et al. Quantum entanglement between optical and microwave photonic qubits. Phys. Rev. X 14, 031055 (2024).


    Google Scholar
     

  • Hamze, A. K., Reynaud, M., Geler-Kremer, J. & Demkov, A. A. Design rules for strong electro-optic materials. npj Comput. Mater. 6, 130 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kindem, J. M. et al. Characterization of 171Yb3+:YVO4 for photonic quantum technologies. Phys. Rev. B 98, 024404 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Z.-Q. et al. Photonic integrated quantum memory in rare-earth doped solids. Laser Photon. Rev. 17, 2300257 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hatipoglu, U., Sonar, S., Lake, D. P., Meesala, S. & Painter, O. In situ tuning of optomechanical crystals with nano-oxidation. Optica 11, 371–375 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ourari, S. et al. Indistinguishable telecom band photons from a single Er ion in the solid state. Nature 620, 977–981 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ruskuc, A. et al. Multiplexed entanglement of multi-emitter quantum network nodes. Nature 639, 54–59 (2025).

  • Probst, S. et al. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110, 157001 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sumida, D. & Fan, T. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett. 19, 1343–1345 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Article 
    ADS 

    Google Scholar