• Campanera, J. M., Savini, G., Suarez-Martinez, I. & Heggie, M. I. Density functional calculations on the intricacies of moiré patterns on graphite. Phys. Rev. B 75, 235449 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Shterman, D., Gjonaj, B. & Bartal, G. Experimental demonstration of multi moiré structured illumination microscopy. ACS Photonics 5, 1898–1902 (2018).

    Article 

    Google Scholar
     

  • Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics 14, 663–668 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, P. et al. Two-dimensional Thouless pumping of light in photonic moiré lattices. Nat. Commun. 13, 6738 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guan, J. et al. Far-field coupling between moiré photonic lattices. Nat. Nanotechnol. 18, 514–520 (2023).

    Article 
    ADS 

    Google Scholar
     

  • González-Tudela, A. & Cirac, J. I. Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A 100, 053604 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Luo, X. W. & Zhang, C. Spin-twisted optical lattices: tunable flat bands and Larkin-Ovchinnikov superfluids. Phys. Rev. Lett. 126, 103201 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article 
    MathSciNet 

    Google Scholar
     

  • Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fukuda, J. I. & Žumer, S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article 

    Google Scholar
     

  • Yang, L. et al. Embedded skyrmion bags in thin films of chiral magnets. Adv. Mater. 36, 2403274 (2024).

  • Zheludev, N. I. & Yuan, G. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys. 4, 16–32 (2021).

    Article 

    Google Scholar
     

  • Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Article 

    Google Scholar
     

  • Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dai, Y. et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 11420 (2022).

    Article 

    Google Scholar
     

  • Lei, X. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 127, 237403 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin-orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lifshitz, R. Quasicrystals: a matter of definition. Found. Phys. 33, 1703–1711 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Putley, H. J., Davies, B., Rodríguez-Fortuño, F. J., Bykov, A. Yu. & Zayats, A. V. Mixing skyrmions and merons in topological quasicrystals of evanescent optical field. Preprint at arxiv.org/abs/2409.03932 (2024).

  • Lopes dos Santos, J. M. B., Peres, N. M. R. & Neto, A. H. C. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Davis, T. J. et al. Subfemtosecond and nanometer plasmon dynamics with photoelectron microscopy: theory and efficient simulations. ACS Photonics 4, 2461–2469 (2017).

    Article 

    Google Scholar
     

  • Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).

    Article 

    Google Scholar
     

  • Smirnova, D. A., Nori, F. & Bliokh, K. Y. Water-wave vortices and skyrmions. Phys. Rev. Lett. 132, 054003 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ghosh, A. et al. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 41413 (2021).

    Article 

    Google Scholar
     

  • Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Berry, M. V. & Dennis, M. R. Knotted and linked phase singularities in monochromatic waves. Proc. R. Soc. A: Math. Phys. Eng. Sci. 457, 2251–2263 (2001).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kahl, P. et al. Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy. Plasmonics 13, 239–246 (2018).

    Article 

    Google Scholar
     

  • Dreher, P. et al. Spatio-temporal topology of plasmonic spin meron pairs revealed by polarimetric photo-emission microscopy. Adv. Photonics 6, 066007 (2024).

    Article 

    Google Scholar
     

  • Dreher, P. et al. Momentum space separation of quantum path interferences between photons and surface plasmon polaritons in nonlinear photoemission microscopy. Nanophotonics 13, 1593–1602 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yang, A. et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci. 10, 2205249 (2023).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Roadmap on spatiotemporal light fields. J. Opt. 25, 093001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Neubauer, A. et al. Spectroscopy of nanoantenna-covered Cu2O: towards enhancing quadrupole transitions in Rydberg excitons. Phys. Rev. B 106, 165305 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schwab, J. et al. Skyrmion bags of light in plasmonic moiré superlattices. figshare https://doi.org/10.6084/m9.figshare.28541801 (2025).