Campanera, J. M., Savini, G., Suarez-Martinez, I. & Heggie, M. I. Density functional calculations on the intricacies of moiré patterns on graphite. Phys. Rev. B 75, 235449 (2007).
Shterman, D., Gjonaj, B. & Bartal, G. Experimental demonstration of multi moiré structured illumination microscopy. ACS Photonics 5, 1898–1902 (2018).
Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).
Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2019).
Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics 14, 663–668 (2020).
Wang, P. et al. Two-dimensional Thouless pumping of light in photonic moiré lattices. Nat. Commun. 13, 6738 (2022).
Guan, J. et al. Far-field coupling between moiré photonic lattices. Nat. Nanotechnol. 18, 514–520 (2023).
González-Tudela, A. & Cirac, J. I. Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A 100, 053604 (2019).
Luo, X. W. & Zhang, C. Spin-twisted optical lattices: tunable flat bands and Larkin-Ovchinnikov superfluids. Phys. Rev. Lett. 126, 103201 (2021).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).
Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).
Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Fukuda, J. I. & Žumer, S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).
Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).
Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2023).
Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).
Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).
Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).
Yang, L. et al. Embedded skyrmion bags in thin films of chiral magnets. Adv. Mater. 36, 2403274 (2024).
Zheludev, N. I. & Yuan, G. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys. 4, 16–32 (2021).
Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).
Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).
Dai, Y. et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 9, 11420 (2022).
Lei, X. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 127, 237403 (2021).
Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin-orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).
Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).
Lifshitz, R. Quasicrystals: a matter of definition. Found. Phys. 33, 1703–1711 (2003).
Putley, H. J., Davies, B., Rodríguez-Fortuño, F. J., Bykov, A. Yu. & Zayats, A. V. Mixing skyrmions and merons in topological quasicrystals of evanescent optical field. Preprint at arxiv.org/abs/2409.03932 (2024).
Lopes dos Santos, J. M. B., Peres, N. M. R. & Neto, A. H. C. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).
Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).
Davis, T. J. et al. Subfemtosecond and nanometer plasmon dynamics with photoelectron microscopy: theory and efficient simulations. ACS Photonics 4, 2461–2469 (2017).
Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).
Smirnova, D. A., Nori, F. & Bliokh, K. Y. Water-wave vortices and skyrmions. Phys. Rev. Lett. 132, 054003 (2024).
Ghosh, A. et al. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 41413 (2021).
Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).
Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).
Berry, M. V. & Dennis, M. R. Knotted and linked phase singularities in monochromatic waves. Proc. R. Soc. A: Math. Phys. Eng. Sci. 457, 2251–2263 (2001).
Kahl, P. et al. Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy. Plasmonics 13, 239–246 (2018).
Dreher, P. et al. Spatio-temporal topology of plasmonic spin meron pairs revealed by polarimetric photo-emission microscopy. Adv. Photonics 6, 066007 (2024).
Dreher, P. et al. Momentum space separation of quantum path interferences between photons and surface plasmon polaritons in nonlinear photoemission microscopy. Nanophotonics 13, 1593–1602 (2024).
Yang, A. et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci. 10, 2205249 (2023).
Shen, Y. et al. Roadmap on spatiotemporal light fields. J. Opt. 25, 093001 (2023).
Neubauer, A. et al. Spectroscopy of nanoantenna-covered Cu2O: towards enhancing quadrupole transitions in Rydberg excitons. Phys. Rev. B 106, 165305 (2022).
Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).
Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).
Schwab, J. et al. Skyrmion bags of light in plasmonic moiré superlattices. figshare https://doi.org/10.6084/m9.figshare.28541801 (2025).