• Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Shekhter, A. et al. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ. Nature 498, 75–77 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).

    Article 

    Google Scholar
     

  • Bourges, P., Bounoua, D. & Sidis, Y. Loop currents in quantum matter. Comptes Rendus. Physique 22, 7–31 (2021).

    Article 

    Google Scholar
     

  • Murayama, H. et al. Diagonal nematicity in the pseudogap phase of HgBa2CuO4+δ. Nat. Commun. 10, 3282 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sebastian, S. E., Harrison, N. & Lonzarich, G. G. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Rep. Prog. Phys. 75, 102501 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys 10, 409–429 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ramshaw, B. J. et al. Broken rotational symmetry on the Fermi surface of a high-Tc superconductor. npj Quantum Mater. 2, 8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gerber, S. et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 350, 949–952 (2015).

    Article 

    Google Scholar
     

  • LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Chan, M. K. et al. Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2CuO4+δ. Proc. Natl Acad. Sci. USA 117, 9782–9786 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kunisada, S. et al. Observation of small Fermi pockets protected by clean CuO2 sheets of a high-Tc superconductor. Science 369, 833–838 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kaul, R. K., Kolezhuk, A., Levin, M., Sachdev, S. & Senthil, T. Hole dynamics in an antiferromagnet across a deconfined quantum critical point. Phys. Rev. B 75, 235122 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Rice, T. M., Yang, K.-Y. & Zhang, F. C. A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates. Rep. Prog. Phys. 75, 016502 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Mascot, E. et al. Electronic spectra with paramagnon fractionalization in the single-band Hubbard model. Phys. Rev. B 105, 075146 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Reber, T. J. et al. The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ. Nat. Phys. 8, 606–610 (2012).

    Article 

    Google Scholar
     

  • Norman, M. R., Kanigel, A., Randeria, M., Chatterjee, U. & Campuzano, J. C. Modeling the Fermi arc in underdoped cuprates. Phys. Rev. B 76, 174501 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fang, Y. et al. Fermi surface transformation at the pseudogap critical point of a cuprate superconductor. Nat. Phys. 18, 558–564 (2022).

    Article 

    Google Scholar
     

  • Musser, S., Chowdhury, D., Lee, P. A. & Senthil, T. Interpreting angle-dependent magnetoresistance in layered materials: application to cuprates. Phys. Rev. B 105, 125105 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yamaji, K. On the angle dependence of the magnetoresistance in quasi-two-dimensional organic superconductors. J. Phys. Soc. Jpn. 58, 1520–1523 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Singleton, J. Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields. Rep. Prog. Phys 63, 1111–1207 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5782 (2004).

    Article 

    Google Scholar
     

  • Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

  • Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Putilin, S. N., Antipov, E. V., Chmaissem, O. & Marezio, M. Superconductivity at 94 K in HgBa2Cu04+δ. Nature 362, 226–228 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Lewin, S. K. & Analytis, J. G. Angle-dependent magnetoresistance as a probe of Fermi surface warping in HgBa2CuO4+δ. Phys. Rev. B 98, 075116 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Grigoriev, P. D. Angular dependence of the Fermi surface cross-section area and magnetoresistance in quasi-two-dimensional metals. Phys. Rev. B 81, 205122 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nam, M. S., Blundell, S. J., Ardavan, A., Symington, J. A. & Singleton, J. Fermi surface shape and angle-dependent magnetoresistance oscillations. J. Phys. Condens. Matter 13, 2271–2279 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Das, T. Q = 0 collective modes originating from the low-lying Hg-O band in superconducting HgBa2CuO4+δ. Phys. Rev. B 86, 054518 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Origin of the material dependence of Tc in the single-layered cuprates. Phys. Rev. B 85, 064501 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Goddard, P. A. et al. Angle-dependent magnetoresistance of the layered organic superconductor κ− (ET)2Cu(NCS)2: simulation and experiment. Phys. Rev. B 69, 174509 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Smith, M. F. & McKenzie, R. H. Fermi surface of underdoped cuprate superconductors from interlayer magnetoresistance: closed pockets versus open arcs. Phys. Rev. B 82, 172510 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lebed, A. G. & Bagmet, N. N. Nonanalytical magnetoresistance, the third angular effect, and a method to investigate Fermi surfaces in quasi-two-dimensional conductors. Phys. Rev. B 55, R8654–R8657 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Vishik, I. M. et al. Angle-resolved photoemission spectroscopy study of HgBa2CuO4+δ. Phys. Rev. B 89, 195141 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sreedhar, S. A. et al. Three interaction energy scales in the single-layer high-Tc cuprate HgBa2CuO4+δ. Phys. Rev. B 102, 205109 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Barišić, N. et al. Universal quantum oscillations in the underdoped cuprate superconductors. Nat. Phys. 9, 761–764 (2013).

    Article 

    Google Scholar
     

  • Chan, M. K. et al. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor. Nat. Commun. 7, 12244 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tabis, W. et al. Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4+δ. Phys. Rev. B 96, 134510 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chan, M. K. et al. Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO4+δ. Nat. Commun. 7, 10819 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gannot, Y., Ramshaw, B. J. & Kivelson, S. A. Fermi surface reconstruction by a charge density wave with finite correlation length. Phys. Rev. B 100, 045128 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Yamamoto, A., Hu, W.-Z. & Tajima, S. Thermoelectric power and resistivity of HgBa2CuO4+δ over a wide doping range. Phys. Rev. B 63, 024504 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, X. et al. Crystal growth and characterization of the model high-temperature superconductor HgBa2CuO4+δ. Adv. Mater. 18, 3243–3247 (2006).

    Article 

    Google Scholar
     

  • House, A. A. et al. Oscillatory magnetoresistance in the charge-transfer salt β″-BEDT-TTF2AuBr2 in magnetic fields up to 60 T: evidence for field-induced Fermi-surface reconstruction. Phys. Rev. B 53, 9127–9136 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Hill, S. Semiclassical description of cyclotron resonance in quasi-two-dimensional organic conductors: theory and experiment. Phys. Rev. B 55, 4931–4940 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Schofield, A. J. & Cooper, J. R. Quasilinear magnetoresistance in an almost two-dimensional band structure. Phys. Rev. B 62, 10779–10784 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Michon, B. et al. Thermodynamic signatures of quantum criticality in cuprate superconductors. Nature 567, 218–222 (2019).

    Article 
    ADS 

    Google Scholar