• Allen, M. Liability for climate change. Nature 421, 891–892 (2003). This paper first proposed a scientific basis for claims for legal liability resulting from climate impacts.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kysar, D. A. What climate change can do about tort law. Environ. Law 41, 1–71 (2011).


    Google Scholar
     

  • Cranor, C. F. The science veil over tort law policy: how should scientific evidence be utilized in toxic tort law? Law Philos. 24, 139–210 (2005).

    Article 

    Google Scholar
     

  • Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).

  • Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing extreme events to climate change: a new frontier in a warming world. One Earth 2, 522–527 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004). This paper was the first single-event global warming attribution study.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G. & Allen, M. R. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 39, L04702 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Patricola, C. M. & Wehner, M. F. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Risser, M. D. & Wehner, M. F. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett. 44, 12,457–12,464 (2017).

    Article 

    Google Scholar
     

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020). This paper outlines the standard procedure for event attribution used by the World Weather Attribution group, reflecting the scientific consensus on extreme event attribution.

    Article 
    ADS 

    Google Scholar
     

  • Reed, K. A. & Wehner, M. F. Real-time attribution of the influence of climate change on extreme weather events: a storyline case study of Hurricane Ian rainfall. Environ. Res. Clim. 2, 043001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reed, K., Stansfield, A., Wehner, M. & Zarzycki, C. Forecasted attribution of the human influence on Hurricane Florence. Sci. Adv. 6, eaaw9253 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banda, M., L. Climate science in the courts: a review of U.S. and international judicial pronouncements. Environmental Law Institute https://www.eli.org/research-report/climate-science-courts-review-us-and-international-judicial-pronouncements (2020).

  • Wehner, M. F. & Reed, K. A. Operational extreme weather event attribution can quantify climate change loss and damages. PLOS Clim. 1, e0000013 (2022).

    Article 

    Google Scholar
     

  • Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993).

  • Case, L. Climate change: a new realm of tort litigation, and how to recover when the litigation heats up. Santa Clara Law Rev. 51, 265 (2011).


    Google Scholar
     

  • Marjanac, S. & Patton, L. Extreme weather event attribution science and climate change litigation: an essential step in the causal chain? J. Energy Nat. Resour. Law 36, 265–298 (2018).


    Google Scholar
     

  • Marjanac, S., Patton, L. & Thornton, J. Acts of God, human influence and litigation. Nat. Geosci. 10, 616–619 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Setzer, J. & Higham, C. Global trends in climate change litigation: 2022 snapshot. London School of Economics and Political Science https://www.lse.ac.uk/granthaminstitute/publication/global-trends-in-climate-change-litigation-2022/ (2022).

  • Peel, J. & Osofsky, H. M. A rights turn in climate change litigation? Transnatl Environ. Law 7, 37–67 (2018).

    Article 

    Google Scholar
     

  • Tienhaara, K., Thrasher, R., Simmons, B. A. & Gallagher, K. P. Investor-state disputes threaten the global green energy transition. Science 376, 701–703 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wentz, J. & Franta, B. Liability for public deception: linking fossil fuel disinformation to climate damages. Environ. Law Report. 52, 10995–11020 (2022).


    Google Scholar
     

  • Wasim, R. Corporate (non)disclosure of climate change information. Columbia Law Rev. 119, 1311–1354 (2019).


    Google Scholar
     

  • Wentz, J., Merner, D., Franta, B., Lehmen, A. & Frumhoff, P. C. Research priorities for climate litigation. Earths Future 11, e2022EF002928 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Olszynski, M., Mascher, S. & Doelle, M. From smokes to smokestacks: lessons from tobacco for the future of climate change liability. Georget. Environ. Law Rev. 30, 1–46 (2017).


    Google Scholar
     

  • Kaufman, J. Oklahoma v. Purdue Pharma: public nuisance in your medicine cabinet. Cardozo Law Rev. 42, 429–462 (2020).


    Google Scholar
     

  • Bouwer, K. Lessons from a distorted metaphor: the Holy Grail of climate litigation. Transnatl Environ. Law 9, 347–378 (2020).

    Article 

    Google Scholar
     

  • County of Multnomah v. Exxon Mobil Corp. (2023).

  • City of New York v. Chevron Corp., no. 18-2188 (2019).

  • State of Rhode Island v. Shell Oil Products Co., LLC, no. 19-1818 (2020).

  • Municipalities of Puerto Rico v. Exxon Mobil Corp. (2022).

  • Native Village of Kivalina v. ExxonMobil Corp. (2009).

  • Urgenda Foundation v State of the Netherlands (2015).

  • Tanne, J. H. Young people in Montana win lawsuit for clean environment. BMJ 382, 1891 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Buchanan, M. The coming wave of climate legal action. Semafor https://www.semafor.com/article/02/01/2023/the-coming-wave-of-climate-legal-action (2023).

  • Davis, S. J. & Diffenbaugh, N. Dislocated interests and climate change. Environ. Res. Lett. 11, 061001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Harrington, L. J. & Otto, F. E. L. Attributable damage liability in a non-linear climate. Clim. Change 153, 15–20 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Prather, M. J. et al. Tracking uncertainties in the causal chain from human activities to climate. Geophys. Res. Lett. 36, L05707 (2009).

    Article 
    ADS 

    Google Scholar
     

  • No authors listed. Causation in environmental law: lessons from toxic torts. Harv. Law Rev. 128, 2256–2277 (2015).


    Google Scholar
     

  • Green, M. D. & Powers, Jr., W. C. Restatement of the Law Third, Torts: Liability for Physical and Emotional Harm (American Law Institute, 2010).

  • Grimm, D. J. Global warming and market share liability: a proposed model for allocating tort damages among CO2 producers. Colum. J. Environ. Law 32, 209 (2007).


    Google Scholar
     

  • Peñalver, E. M. Acts of God or toxic torts? Applying tort principles to the problem of climate change. Nat. Resour. J. 38, 563–601 (1998).


    Google Scholar
     

  • Lloyd, E. A. & Shepherd, T. G. Climate change attribution and legal contexts: evidence and the role of storylines. Clim. Change 167, 28 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke, M., Zahid, M., Diffenbaugh, N. & Hsiang, S. M. Quantifying climate change loss and damage consistent with a social cost of greenhouse gases. NBER working paper 31658. National Bureau of Economic Research https://www.nber.org/papers/w31658 (2023).

  • Schleussner, C.-F., Andrijevic, M., Kikstra, J., Heede, R. & Rogelj, J. Fossil fuel companies’ true balance sheets. ESS Open Archive https://doi.org/10.22541/essoar.167810526.62141909/v1 (2023).

  • Trudinger, C. & Enting, I. Comparison of formalisms for attributing responsibility for climate change: non-linearities in the Brazilian Proposal approach. Clim. Change 68, 67–99 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Callahan, C. W. & Mankin, J. S. National attribution of historical climate damages. Clim. Change 172, 40 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rostron, A. Beyond market share liability: a theory of proportional share liability for nonfungible products. UCLA Law Rev. 52, 151–215 (2004).


    Google Scholar
     

  • Stuart-Smith, R. F. et al. Filling the evidentiary gap in climate litigation. Nat. Clim. Change 11, 651–655 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Holt, S. & McGrath, C. Climate change: is the common law up to the task? Auckland Univ. Law Rev. 24, 10–31 (2018).


    Google Scholar
     

  • Memorandum of Law of Chevron Corporation, ConocoPhillips, and Exxon Mobil Corporation Addressing Common Grounds in Support of their Motions to Dismiss Plaintiff’s Amended Complaint. City of New York v. BP P.L.C.; Chevron Corporation; ConocoPhillips; Exxon Mobil Corporation; and Royal Dutch Shell PLC. Case no. 18 Civ. 182 (2018).

  • Burger, M., Wentz, J. & Horton, R. The law and science of climate change attribution. Colum. J. Environ. Law 45, 57–240 (2020). This paper outlines the potential for attribution science to inform climate litigation, and specifically to fulfil the causation requirement for standing.


    Google Scholar
     

  • Höhne, N. et al. Contributions of individual countries’ emissions to climate change and their uncertainty. Clim. Change 106, 359–391 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Skeie, R. B. et al. Perspective has a strong effect on the calculation of historical contributions to global warming. Environ. Res. Lett. 12, 024022 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Matthews, H. D. Quantifying historical carbon and climate debts among nations. Nat. Clim. Change 6, 60–64 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Heede, R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Clim. Change 122, 229–241 (2014). This paper was the first to systematically link individual fossil fuel producers to the emissions resulting from the consumption of their products.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ekwurzel, B. et al. The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Clim. Change 144, 579–590 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Licker, R. et al. Attributing ocean acidification to major carbon producers. Environ. Res. Lett. 14, 124060 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Otto, F. E. L., Skeie, R. B., Fuglestvedt, J. S., Berntsen, T. & Allen, M. R. Assigning historic responsibility for extreme weather events. Nat. Clim. Change 7, 757–759 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dahl, K. A. et al. Quantifying the contribution of major carbon producers to increases in vapor pressure deficit and burned area in western US and southwestern Canadian forests. Environ. Res. Lett. 18, 064011 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Beusch, L. et al. Responsibility of major emitters for country-level warming and extreme hot years. Commun. Earth Environ. 3, 7 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wei, T. et al. Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc. Natl Acad. Sci. USA 109, 12911–12915 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wigley, T. M. L. & Raper, S. C. B. Interpretation of high projections for global-mean warming. Science 293, 451–454 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 17, 7213–7228 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leach, N. J. et al. FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geosci. Model Dev. 14, 3007–3036 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicholls, Z. R. J. et al. Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geosci. Model Dev. 13, 5175–5190 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rogelj, J. et al. in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) 93–174 (Cambridge Univ. Press, 2018).

  • Lynch, C., Hartin, C., Bond-Lamberty, B. & Kravitz, B. An open-access CMIP5 pattern library for temperature and precipitation: description and methodology. Earth Syst. Sci. Data 9, 281–292 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Tebaldi, C. & Arblaster, J. M. Pattern scaling: its strengths and limitations, and an update on the latest model simulations. Clim. Change 122, 459–471 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016). This review documents many of the methodological advances used in assessing the socioeconomic impacts of climate change.

    Article 
    PubMed 

    Google Scholar
     

  • Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carleton, T. et al. Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137, 2037–2105 (2022).

    Article 

    Google Scholar
     

  • Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the US temperature-mortality relationship over the twentieth century. J. Political Econ. 124, 105–159 (2016).

    Article 

    Google Scholar
     

  • Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

    Article 

    Google Scholar
     

  • Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manag. 103, 102360 (2020).

    Article 

    Google Scholar
     

  • Davenport, F. V., Burke, M. & Diffenbaugh, N. S. Contribution of historical precipitation change to US flood damages. Proc. Natl Acad. Sci. USA 118, e2017524118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diffenbaugh, N. S., Davenport, F. V. & Burke, M. Historical warming has increased U.S. crop insurance losses. Environ. Res. Lett. 16, 084025 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. USA 116, 9808–9813 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8, eadd3726 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiang, S. et al. in Fifth National Climate Assessment (eds Crimmins, A. R. et al.) Ch. 19 (U.S. Global Change Research Program, 2023).

  • Lott, F. C. et al. Quantifying the contribution of an individual to making extreme weather events more likely. Environ. Res. Lett. 16, 104040 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Frame, D. J. et al. Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought. Clim. Change 162, 781–797 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Frame, D. J., Wehner, M. F., Noy, I. & Rosier, S. M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 160, 271–281 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Newman, R. & Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 14, 6103 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perkins-Kirkpatrick, S. E. et al. On the attribution of the impacts of extreme weather events to anthropogenic climate change. Environ. Res. Lett. 17, 024009 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Brown, P. T. When the fraction of attributable risk does not inform the impact associated with anthropogenic climate change. Clim. Change 176, 115 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Allen, M. et al. Scientific challenges in the attribution of harm to human influence on climate. Univ. Pa. Law Rev. 155, 1353–1400 (2007).


    Google Scholar
     

  • Strauss, B. H. et al. Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change. Nat. Commun. 12, 2720 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbon Majors database. https://carbonmajors.org/ (2024).

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  • Burke, M. & Tanutama, V. Climatic constraints on aggregate economic output. NBER working paper 25779. National Bureau of Economic Research https://www.nber.org/papers/w25779 (2019).

  • Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628, 551–557 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waidelich, P., Batibeniz, F., Rising, J. A., Kikstra, J. & Seneviratne, S. I. Climate damage projections beyond annual temperature. Nat. Clim. Change 14, 592–599 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kotz, M., Levermann, A. & Wenz, L. The effect of rainfall changes on economic production. Nature 601, 223–227 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, S., Chua, K., Coggins, J. & Mohtadi, H. Heat waves, climate change, and economic output. J. Eur. Econ. Assoc. 19, 2658–2694 (2021).

    Article 

    Google Scholar
     

  • Gelles, D. Oregon county sues fossil fuel companies over 2021 heat dome. New York Times https://www.nytimes.com/2023/06/22/climate/oregon-lawsuit-heat-dome.html (22 June 2023).

  • Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, V., Mukherjee, S., Kumar, R. & Stone, D. A. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds. Environ. Res. Lett. 12, 124012 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Supran, G., Rahmstorf, S. & Oreskes, N. Assessing ExxonMobil’s global warming projections. Science 379, eabk0063 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Supran, G. & Oreskes, N. Assessing ExxonMobil’s climate change communications (1977–2014). Environ. Res. Lett. 12, 084019 (2017). This paper found that ExxonMobil systematically cast doubt on mainstream climate science in the public sphere while internally acknowledging climate change and its consequences.

    Article 
    ADS 

    Google Scholar
     

  • Callahan, C. W. & Mankin, J. S. Persistent effect of El Niño on global economic growth. Science 380, 1064–1069 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd, E. A., Oreskes, N., Seneviratne, S. I. & Larson, E. J. Climate scientists set the bar of proof too high. Clim. Change 165, 55 (2021). This paper outlines the different burdens of proof used in science and law, arguing that scientific standards are often too strict relative to legal standards.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Editorial. It’s time to talk about ditching statistical significance. Nature 567, 283 (2019).

    Article 

    Google Scholar
     

  • Gelman, A. & Stern, H. The difference between significant and not significant is not itself statistically significant. Am. Stat. 60, 328–331 (2006).

    Article 
    MathSciNet 

    Google Scholar
     

  • Shepherd, T. G. Bringing physical reasoning into statistical practice in climate-change science. Clim. Change 169, 2 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weaver, R. H. & Kysar, D. A. Courting disaster: climate change and the adjudication of catastrophe. Notre Dame Law Rev. 93, 295–356 (2017).


    Google Scholar
     

  • Hunter, D. & Salzman, J. Negligence in the air: the duty of care in climate change litigation. Univ. Pa. Law Rev. 155, 1741–1794 (2007).


    Google Scholar
     

  • Franta, B. Early oil industry knowledge of CO2 and global warming. Nat. Clim. Change 8, 1024–1025 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Supran, G. & Oreskes, N. Rhetoric and frame analysis of ExxonMobil’s climate change communications. One Earth 4, 696–719 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bonneuil, C., Choquet, P.-L. & Franta, B. Early warnings and emerging accountability: Total’s responses to global warming, 1971–2021. Global Environ. Change 71, 102386 (2021).

    Article 

    Google Scholar
     

  • Geiling, N. City of Oakland v. BP: testing the limits of climate science in climate litigation. Ecol. Law Q. 46, 683–694 (2019).


    Google Scholar
     

  • Novak, S. The role of courts in remedying climate chaos: transcending judicial nihilism and taking survival seriously. Georget. Environ. Law Rev. 32, 743–778 (2019).


    Google Scholar
     

  • Andreoni, M. Vermont to require fossil-fuel companies to pay for climate damage. New York Times https://www.nytimes.com/2024/05/31/climate/vermont-law-fossil-fuel-climate-damage.html (1 June 2024).

  • Karl, T. L. The perils of the petro-state: reflections on the paradox of plenty. J. Int. Aff. 53, 31–48 (1999).


    Google Scholar
     

  • Gillett, N. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 423–552 (Cambridge Univ. Press, 2021).

  • Kotz, M., Wenz, L., Stechemesser, A., Kalkuhl, M. & Levermann, A. Day-to-day temperature variability reduces economic growth. Nat. Clim. Change 11, 319–325 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 118, 1716–1733 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wenz, L., Carr, R. D., Kögel, N., Kotz, M. & Kalkuhl, M. DOSE – global data set of reported sub-national economic output. Sci. Data 10, 425 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lessmann, C. & Seidel, A. Regional inequality, convergence, and its determinants – a view from outer space. Eur. Econ. Rev. 92, 110–132 (2017).

    Article 

    Google Scholar