• Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Emin, D. et al. Polarons (Cambridge University Press, 2013).

  • Alexandrov, A. S. & Devreese, J. T. Advances In Polaron Physics,159 (Springer, 2010).

  • Feldtmann, T., Kira, M. & Koch, S. W. Phonon sidebands in semiconductor luminescence. Phys. status solidi (b) 246, 332–336 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shan, W. et al. Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 86, 191911 (2005).

  • Reynolds, D., Look, D. C., Talwar, D., McCoy, G. & Evans, K. Demonstration of semiconductor characterization by phonon sidebands in photoluminescence. Phys. Rev. B 51, 2572 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grein, C. & John, S. Effects of acoustic-and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors. Phys. Rev. B 41, 7641 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feldtmann, T., Kira, M. & Koch, S. W. Theoretical analysis of higher-order phonon sidebands in semiconductor luminescence spectra. J. Lumin. 130, 107–113 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 1–15 (2016).

    Article 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stier, A. V., McCreary, K. M., Jonker, B. T., Kono, J. & Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 7, 10643 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chernikov, A. et al. Excitons in atomically thin transition-metal dichalcogenides. In 2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications, 1–2 (IEEE, 2014).

  • Wang, Z. et al. Tailoring the nature and strength of electron–phonon interactions in the SrTiO3 (001) 2D electron liquid. Nat. Mater. 15, 835–839 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C., Avila, J., Frantzeskakis, E., Levy, A. & Asensio, M. C. Observation of a two-dimensional liquid of fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cancellieri, C. et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, W. et al. Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3. Nat. Commun. 11, 4780 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyksik, M. et al. Polaron vibronic progression shapes the optical response of 2D perovskites. Adv. Sci. 11, 2305182 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Holstein polaron in a valley-degenerate two-dimensional semiconductor. Nat. Mater. 17, 676–680 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polovnikov, B. et al. Field-induced hybridization of moiré excitons in MoSe2/WS2 heterobilayers. Phys. Rev. Lett. 132, 076902 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Van Der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brem, S., Linderälv, C., Erhart, P. & Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 20, 8534–8540 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Lai, J.-M. & Zhang, J. Review of phonons in moiré superlattices. J. Semicond. 44, 011902 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, S. Y. et al. Modulation of phonons and excitons due to moiré potentials in twisted bilayer of WSe2/MoSe2. Acs Nano. 17, 13938–13947 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. Acs Nano 12, 8770–8780 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fogler, M., Butov, L. & Novoselov, K. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F.-C., Xue, F. & MacDonald, A. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, A. J. et al. Exciton-polarons in the presence of strongly correlated electronic states in a MoSe2/WSe2 moiré superlattice. npj 2D Mater. Appl. 6, 79 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Phonon-mediated interlayer charge separation and recombination in a MoSe2/WSe2 heterostructure. Nano Lett. 21, 2165–2173 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ovesen, S. et al. Interlayer exciton dynamics in van der Waals heterostructures. Commun. Phys. 2, 23 (2019).

    Article 

    Google Scholar
     

  • Zimmermann, J. E., Kim, Y. D., Hone, J. C., Höfer, U. & Mette, G. Directional ultrafast charge transfer in a WSe2/MoSe2 heterostructure selectively probed by time-resolved SHG imaging microscopy. Nanoscale Horiz. 5, 1603–1609 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katzer, M. et al. Exciton-phonon scattering: competition between the bosonic and fermionic nature of bound electron-hole pairs. Phys. Rev. B 108, L121102 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sood, A. et al. Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nat. Nanotechnol. 18, 29–35 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bange, J. P. et al. Ultrafast dynamics of bright and dark excitons in monolayer WSe2 and heterobilayer WSe2/MoS2. 2D Mater. 10, 035039 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shinokita, K., Miyauchi, Y., Watanabe, K., Taniguchi, T. & Matsuda, K. Resonant coupling of a moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett. 21, 5938–5944 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Coherent phonons in van der Waals MoSe2/WSe2 heterobilayers. Nano Lett. 23, 8186–8193 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iakovlev, Z., Semina, M., Glazov, M. & Sherman, E. Y. Flexural deformations and collapse of bilayer two-dimensional crystals by interlayer excitons. Phys. Rev. B 105, 205305 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Semina, M. A., Glazov, M. M. & Sherman, E. Interlayer exciton–polaron in atomically thin semiconductors. Ann. der Phys. 532, 2000339 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Woods, C. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Enaldiev, V., Zolyomi, V., Yelgel, C., Magorrian, S. & Fal’Ko, V. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Soubelet, P. et al. The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. Nanoscale 11, 10446–10453 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, T. Y. et al. Coherent lattice vibrations in mono-and few-layer WSe2. Acs Nano 10, 5560–5566 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T. & MacDonald, A. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fang, H. et al. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nat. Commun. 14, 6910 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X., Malic, E. & Lu, Y. Dipolar many-body complexes and their interactions in stacked 2D heterobilayers. Nat. Rev. Phys. 6, 439–454 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 16, 1208–1213 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blundo, E. et al. Localisation-to-delocalisation transition of moiré excitons in WSe2/MoSe2 heterostructures. Nat. Commun. 15, 1057 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinokita, K., Watanabe, K., Taniguchi, T. & Matsuda, K. Valley relaxation of the moiré excitons in a WSe2/MoSe2 heterobilayer. ACS nano 16, 16862–16868 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brotons-Gisbert, M. et al. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Phys. Rev. X 11, 031033 (2021).

    CAS 

    Google Scholar
     

  • Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, B. et al. Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale 14, 12447–12454 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, Q., Rasmita, A., Zhang, Z., Novoselov, K. & Gao, W.-b Signature of cascade transitions between interlayer excitons in a moiré superlattice. Phys. Rev. Lett. 129, 247401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 047401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS nano 15, 1539–1547 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, H. et al. Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer. Nat. Commun. 14, 5766 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Paradisanos, I. et al. Efficient phonon cascades in WSe2 monolayers. Nat. Commun. 12, 538 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duquesne, J.-Y. & Perrin, B. Ultrasonic attenuation in a quasicrystal studied by picosecond acoustics as a function of temperature and frequency. Phys. Rev. B 68, 134205 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Daly, B., Kang, K., Wang, Y. & Cahill, D. G. Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon. Phys. Rev. B 80, 174112 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mahan, G. et al. Many-Particle Physics (Springer, Berlin, 2000). https://doi.org/10.1007/978-1-4757-5714-9.

  • Langreth, D. C. Singularities in the x-ray spectra of metals. Phys. Rev. B 1, 471 (1970).

    Article 
    ADS 

    Google Scholar
     

  • de Jong, M., Seijo, L., Meijerink, A. & Rabouw, F. T. Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter. Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Li, W., Lu, X., Wu, J. & Srivastava, A. Optical control of the valley Zeeman effect through many-exciton interactions. Nat. Nanotechnol. 16, 148–152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinhoff, A. et al. Exciton-exciton interactions in van der Waals heterobilayers. Phys. Rev. X 14, 031025 (2024).

    CAS 

    Google Scholar
     

  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagler, P. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holler, J. et al. Magneto-spectroscopy of interlayer excitons in transition-metal dichalcogenide heterostructures. Phys. status solidi (b) 262, 2400079 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brout, R. & Visscher, W. Suggested experiment on approximate localized modes in crystals. Phys. Rev. Lett. 9, 54 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Zaitsev, A. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B 61, 12909 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, L. et al. Moiré collective vibrations in atomically thin van der Waals superlattices. Nat. Commun. 16, 4117 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS nano 11, 4041–4050 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article 
    CAS 

    Google Scholar