• Pawar, A. Y., Sonawane, D. D., Erande, K. B. & Derle, D. V. Terahertz technology and its applications. Drug Invent. Today 5, 157–163 (2013).

    Article 

    Google Scholar
     

  • Shen, S. et al. Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Optical Mater. 10, 2101008 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Naftaly, M., Vieweg, N. & Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 19, 4203 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Amini, T., Jahangiri, F., Ameri, Z. & Hemmatian, M. A. A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12, (2021).

  • Kawano, Y. Terahertz waves: a tool for condensed matter, the life sciences and astronomy. Contemp. Phys. 54, 143–165 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fedorov, V. Y. & Tzortzakis, S. Powerful terahertz waves from long-wavelength infrared laser filaments. Light Sci. Appl. 9, 186 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Plusquellic, D. F., Siegrist, K., Heilweil, E. J. & Esenturk, O. Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8, 2412–2431 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, H.-J. & Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y.-T., Callegari, C., Feng, X., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 8, 493–496 (2013).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ricci, F., Cuairan, M. T., Conangla, G. P., Schell, A. W. & Quidant, R. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Lett. 19, 6711–6715 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, X., Myers, E., Sader, J. & Roukes, M. Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett. 13, 1528–1534 (2013).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Laurent, L., Yon, J.-J., Moulet, J.-S., Roukes, M. & Duraffourg, L. 12-μ m-pitch electromechanical resonator for thermal sensing. Phys. Rev. Appl. 9, 024016 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Juvé, V. et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett. 10, 1853–1858 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rozas, G. et al. Lifetime of THz acoustic nanocavity modes. Phys. Rev. Lett. 102, 015502 (2009).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Rips, S. & Hartmann, M. J. Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 110, 120503 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stannigel, K. et al. Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Forstner, S., Zych, M., Basiri-Esfahani, S., Khosla, K. E. & Bowen, W. P. Nanomechanical test of quantum linearity. Optica 7, 1427–1434 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Clerk, A., Lehnert, K., Bertet, P., Petta, J. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Velez, S. T. et al. Preparation and decay of a single quantum of vibration at ambient conditions. Phys. Rev. X 9, 041007 (2019).

    CAS 

    Google Scholar
     

  • Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Xie, J. et al. Sub-terahertz electromechanics. Nat. Electron. 1–6 (2023).

  • Xie, J., Shen, M. & Tang, H. X. High acoustic velocity x-cut lithium niobate sub-terahertz electromechanics. Appl. Phys. Lett. 124, (2024).

  • Xie, J., Shen, M. & Tang, H. X. Sub-terahertz optomechanics. Optica 11, 724–725 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kramer, J. et al. Acoustic resonators above 100 GHz. Appl. Phys. Lett. 127, 012204 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, D., Xie, J., Guo, Y., Shen, M. & Tang, H. X. Noncontact excitation of multi-GHz lithium niobate electromechanical resonators. Microsyst. Nanoeng. 10, 124 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruenke-Freudenstein, R. G. et al. Surface and bulk two-level-system losses in lithium niobate acoustic resonators. Phys. Rev. Appl. 23, 064055 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Soyer, C., Cattan, E. & Remiens, D. Electrical damage induced by reactive ion-beam etching of lead-zirconate-titanate thin films. J. Appl. Phys. 97, (2005).

  • Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High-quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, (2006).

  • Chen, F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys. 106, (2009).

  • Wang, J. et al. Process-induced poling and plasma-induced damage of thin film PZT. Microelectron. Eng. 177, 13–18 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez, J. et al. Direct detection of Akhiezer damping in a silicon MEMS resonator. Sci. Rep. 9, 2244 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C.-C. et al. Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing. Jpn. J. Appl. Phys. 45, 3822 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhong, Z.-W. Recent developments and applications of chemical mechanical polishing. Int. J. Adv. Manuf. Technol. 109, 1419–1430 (2020).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Investigation of the defect density in ultra-thin Al2O3 films grown using atomic layer deposition. Surf. Coat. Technol. 205, 3334–3339 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Østreng, E., Sønsteby, H. H., Sajavaara, T., Nilsen, O. & Fjellvåg, H. Atomic layer deposition of ferroelectric LiNbO3. J. Mater. Chem. C 1, 4283–4290 (2013).

    Article 

    Google Scholar
     

  • Cleland, A. N. & Roukes, M. L. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. & Parpia, J. M. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cleland, A., Pophristic, M. & Ferguson, I. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett. 79, 2070–2072 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sekaric, L., Carr, D., Evoy, S., Parpia, J. & Craighead, H. G. Nanomechanical resonant structures in silicon nitride: fabrication, operation and dissipation issues. Sens. Actuators A Phys. 101, 215–219 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sekaric, L. et al. Nanomechanical resonant structures in nanocrystalline diamond. Appl. Phys. Lett. 81, 4455–4457 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Henry Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ruby, R., Bradley, P., Larson, J. & Oshmyansky, Y. PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs). Electron. Lett. 35, 794–795 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Gabl, R. et al. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosens. Bioelectron. 19, 615–620 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, E., Choi, Y.-K., Song, J. & Lee, J. Detection of various self-assembled monolayers by AlN-based film bulk acoustic resonator. Mater. Res. Bull. 48, 5076–5079 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Manenti, R. et al. Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Fu, S. et al. High-frequency surface acoustic wave devices based on ZnO/SiC layered structure. IEEE Electron Device Lett. 40, 103–106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shao, L. et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12, 014022 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mayor, F. M. et al. Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire. Phys. Rev. Appl. 15, 014039 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).

    Article 

    Google Scholar
     

  • Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics 10, 346–352 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hong, S. et al. Hanbury brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Kadota, M. & Ogami, T. 5.4 GHz Lamb wave resonator on LiNbO3 thin crystal plate and its application. Jpn. J. Appl. Phys. 50, 07HD11 (2011).

    Article 

    Google Scholar
     

  • Yang, Y., Lu, R., Manzaneque, T. & Gong, S. Toward Ka band acoustics: Lithium niobate asymmetrical mode piezoelectric MEMS resonators. In Proc. IEEE International Frequency Control Symposium (IFCS), 1–5 (IEEE, 2018).

  • Yang, Y., Lu, R., Gao, L. & Gong, S. 10–60-GHz electromechanical resonators using thin-film lithium niobate. IEEE Trans. Microw. Theory Tech. 68, 5211–5220 (2020).

    Article 
    ADS 

    Google Scholar