• Kruglyak, V. V., Demokrotiv, S. O. & Grundler, D. Magnonics. J. Phys. D: Appl. Phys. 43, 264001 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Podbielski, J., Giesen, F. & Grundler, D. Spin-wave interference in microscopic rings. Phys. Rev. Lett. 96, 167207 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Perzlmaier, K., Woltersdorf, G. & Back, C. H. Observation of the propagation and interference of spin waves in ferromagnetic thin films. Phys. Rev. B 77, 054425 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Mode interference and periodic self-focusing of spin waves in permalloy microstripes. Phys. Rev. B 77, 064406 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bertelli, I. et al. Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator. Sci. Adv. 6, eabd3556 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J. et al. Reconfigurable spin-wave interferometer at the nanoscale. Nano Lett. 21, 6237–6244 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D: Appl. Phys. 43, 264005 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Talmelli, G. et al. Reconfigurable submicrometer spin-wave majority gate with electrical transducers. Sci. Adv. 6, eabb4042 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).

    Article 

    Google Scholar
     

  • Papp, A. ́, Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1016 (2021).

    Article 

    Google Scholar
     

  • Albisetti, E. et al. Optically inspired nanomagnonics with nonreciprocal spin waves in synthetic antiferromagnets. Adv. Mater. 32, 1906439 (2020).

    Article 

    Google Scholar
     

  • Girardi, D. et al. Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet. Nat. Commun. 15, 3057 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).

    Article 

    Google Scholar
     

  • Wang, H. et al. Spin pumping of an easy-plane antiferromagnet enhanced by Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 127, 117202 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Boventer, I. et al. Room-temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets. Phys. Rev. Lett. 126, 187201 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


    Google Scholar
     

  • Lee, R. A., Afanasiev, D., Kimel, A. V. & Mikhaylovskiy, R. V. Canted spin order as a platform for ultrafast conversion of magnons. Nature 630, 335–339 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Galindez-Ruales, E. F. et al. Altermagnetism in the hopping regime. Preprint at https://arxiv.org/abs/2310.16907v2 (2024).

  • Hamdi, M., Posva, F. & Grundler, D. Spin wave dispersion of ultra-low damping hematite (α-Fe2O3) at GHz frequencies. Phys. Rev. Mater. 7, 054407 (2023).

    Article 

    Google Scholar
     

  • Wang, H. et al. Long-distance coherent propagation of high-velocity antiferromagnetic spin waves. Phys. Rev. Lett. 130, 096701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • El Kanj, A. et al. Evidence of non-degenerated, non-reciprocal and ultra-fast spin-waves in the canted antiferromagnet α-Fe2O3. Sci. Adv. 9, eadh1601 (2023).

    Article 

    Google Scholar
     

  • Ciubotaru, F., Devolder, T., Manfrini, M., Adelmann, C. & Radu, I. P. All electrical propagating spin wave spectroscopy with broadband wavevector capability. Appl. Phys. Lett. 109, 012403 (2016).

    Article 
    ADS 

    Google Scholar
     

  • d’Allivy Kelly, O. et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 103, 082408 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Broad-wave-vector spin pumping of flat-band magnons. Phys. Rev. Appl. 21, 044024 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Saitoh, E. et al. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Switching magnon chirality in artificial ferrimagnet. Nat. Commun. 13, 1264 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Grünberg, P. in Light Scattering in Solids V (eds Cardona, M. & Güntherodt, G.) Ch. 8 (Springer, 1989).

  • Demidov, V. E. et al. Excitation of coherent propagating spin waves by pure spin currents. Nat. Commun. 7, 10446 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–568 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wimmer, T. et al. Observation of antiferromagnetic magnon pseudospin dynamics and the Hanle effect. Phys. Rev. Lett. 125, 247204 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Camley, R. E. Long-wavelength surface spin waves on antiferromagnets. Phys. Rev. Lett. 45, 283–286 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Tarasenko, V. V. & Kharitonov, V. D. Surface magnetostatic waves in uniaxial antiferromagnets. Sov. Phys. JETP 33, 1246–1250 (1971).

    ADS 

    Google Scholar
     

  • Macêdo, R. & Camley, R. E. Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets. Phys. Rev. B 99, 014437 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Grishunin, K. et al. Terahertz magnon-polaritons in TmFeO3. ACS Photon. 5, 1375–1380 (2018).

    Article 

    Google Scholar
     

  • Boventer, I. et al. Antiferromagnetic cavity magnon polaritons in collinear and canted phases of hematite. Phys. Rev. Appl. 19, 014071 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cortés-Ortuño, D. & Landeros, P. Influence of the Dzyaloshinskii-Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter 25, 156001 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Moon, J.-H. et al. Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184404 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii-Moriya interaction in metal film. Nat. Phys. 11, 825–829 (2015).

    Article 

    Google Scholar
     

  • Ma, X. et al. Dzyaloshinskii-Moriya interaction across an antiferromagnet-ferromagnet interface. Phys. Rev. Lett. 119, 027202 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, R., Daniels, M. W., Zhu, J. G. & Xiao, D. Antiferromagnetic spin wave field-effect transistor. Sci. Rep. 6, 24223 (2016).

    Article 
    ADS 

    Google Scholar
     

  • White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Mills, D. L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Mills, D. L. & Saslow, W. M. Surface effects in the Heisenberg antiferromagnet. Phys. Rev. 171, 488–506 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, J. et al. Large spin Hall magnetoresistance in antiferromagnetic α-Fe2O3/Pt heterostructures. Phys. Rev. Appl. 13, 014019 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Baumgärtl, K. & Grundler, D. Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory. Nat. Commun. 14, 1490 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lan, J., Yu, W. & Xiao, J. Antiferromagnetic domain wall as spin wave polarizer and retarder. Nat. Commun. 8, 178 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 0800172 (2022).

    Article 

    Google Scholar