Kruglyak, V. V., Demokrotiv, S. O. & Grundler, D. Magnonics. J. Phys. D: Appl. Phys. 43, 264001 (2010).
Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114 (2021).
Podbielski, J., Giesen, F. & Grundler, D. Spin-wave interference in microscopic rings. Phys. Rev. Lett. 96, 167207 (2006).
Perzlmaier, K., Woltersdorf, G. & Back, C. H. Observation of the propagation and interference of spin waves in ferromagnetic thin films. Phys. Rev. B 77, 054425 (2008).
Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Mode interference and periodic self-focusing of spin waves in permalloy microstripes. Phys. Rev. B 77, 064406 (2008).
Bertelli, I. et al. Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator. Sci. Adv. 6, eabd3556 (2020).
Chen, J. et al. Reconfigurable spin-wave interferometer at the nanoscale. Nano Lett. 21, 6237–6244 (2021).
Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D: Appl. Phys. 43, 264005 (2010).
Talmelli, G. et al. Reconfigurable submicrometer spin-wave majority gate with electrical transducers. Sci. Adv. 6, eabb4042 (2020).
Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).
Papp, A. ́, Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).
Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).
Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).
Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).
Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1016 (2021).
Albisetti, E. et al. Optically inspired nanomagnonics with nonreciprocal spin waves in synthetic antiferromagnets. Adv. Mater. 32, 1906439 (2020).
Girardi, D. et al. Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet. Nat. Commun. 15, 3057 (2024).
Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).
Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).
Wang, H. et al. Spin pumping of an easy-plane antiferromagnet enhanced by Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 127, 117202 (2021).
Boventer, I. et al. Room-temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets. Phys. Rev. Lett. 126, 187201 (2021).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Lee, R. A., Afanasiev, D., Kimel, A. V. & Mikhaylovskiy, R. V. Canted spin order as a platform for ultrafast conversion of magnons. Nature 630, 335–339 (2024).
Galindez-Ruales, E. F. et al. Altermagnetism in the hopping regime. Preprint at https://arxiv.org/abs/2310.16907v2 (2024).
Hamdi, M., Posva, F. & Grundler, D. Spin wave dispersion of ultra-low damping hematite (α-Fe2O3) at GHz frequencies. Phys. Rev. Mater. 7, 054407 (2023).
Wang, H. et al. Long-distance coherent propagation of high-velocity antiferromagnetic spin waves. Phys. Rev. Lett. 130, 096701 (2023).
El Kanj, A. et al. Evidence of non-degenerated, non-reciprocal and ultra-fast spin-waves in the canted antiferromagnet α-Fe2O3. Sci. Adv. 9, eadh1601 (2023).
Ciubotaru, F., Devolder, T., Manfrini, M., Adelmann, C. & Radu, I. P. All electrical propagating spin wave spectroscopy with broadband wavevector capability. Appl. Phys. Lett. 109, 012403 (2016).
d’Allivy Kelly, O. et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 103, 082408 (2013).
Wang, J. et al. Broad-wave-vector spin pumping of flat-band magnons. Phys. Rev. Appl. 21, 044024 (2024).
Saitoh, E. et al. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).
Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).
Liu, Y. et al. Switching magnon chirality in artificial ferrimagnet. Nat. Commun. 13, 1264 (2022).
Grünberg, P. in Light Scattering in Solids V (eds Cardona, M. & Güntherodt, G.) Ch. 8 (Springer, 1989).
Demidov, V. E. et al. Excitation of coherent propagating spin waves by pure spin currents. Nat. Commun. 7, 10446 (2016).
Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–568 (2020).
Wimmer, T. et al. Observation of antiferromagnetic magnon pseudospin dynamics and the Hanle effect. Phys. Rev. Lett. 125, 247204 (2020).
Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308 (1961).
Camley, R. E. Long-wavelength surface spin waves on antiferromagnets. Phys. Rev. Lett. 45, 283–286 (1980).
Tarasenko, V. V. & Kharitonov, V. D. Surface magnetostatic waves in uniaxial antiferromagnets. Sov. Phys. JETP 33, 1246–1250 (1971).
Macêdo, R. & Camley, R. E. Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets. Phys. Rev. B 99, 014437 (2019).
Grishunin, K. et al. Terahertz magnon-polaritons in TmFeO3. ACS Photon. 5, 1375–1380 (2018).
Boventer, I. et al. Antiferromagnetic cavity magnon polaritons in collinear and canted phases of hematite. Phys. Rev. Appl. 19, 014071 (2023).
Cortés-Ortuño, D. & Landeros, P. Influence of the Dzyaloshinskii-Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter 25, 156001 (2013).
Moon, J.-H. et al. Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184404 (2013).
Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii-Moriya interaction in metal film. Nat. Phys. 11, 825–829 (2015).
Ma, X. et al. Dzyaloshinskii-Moriya interaction across an antiferromagnet-ferromagnet interface. Phys. Rev. Lett. 119, 027202 (2017).
Cheng, R., Daniels, M. W., Zhu, J. G. & Xiao, D. Antiferromagnetic spin wave field-effect transistor. Sci. Rep. 6, 24223 (2016).
White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993).
Mills, D. L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968).
Mills, D. L. & Saslow, W. M. Surface effects in the Heisenberg antiferromagnet. Phys. Rev. 171, 488–506 (1968).
Fischer, J. et al. Large spin Hall magnetoresistance in antiferromagnetic α-Fe2O3/Pt heterostructures. Phys. Rev. Appl. 13, 014019 (2020).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Wang, H. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).
Baumgärtl, K. & Grundler, D. Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory. Nat. Commun. 14, 1490 (2023).
Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).
Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).
Lan, J., Yu, W. & Xiao, J. Antiferromagnetic domain wall as spin wave polarizer and retarder. Nat. Commun. 8, 178 (2017).
Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 0800172 (2022).