Shekhar, S. et al. Roadmapping the next generation of silicon photonics. Nat. Commun. 15, 1–15 (2024).
Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015).
Enami, Y., Luo, J. & Jen, A. K. Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore. AIP Adv. 1, 042137 (2011).
Tahersima, M. H. et al. Coupling-enhanced dual ito layer electro-absorption modulator in silicon photonics. Nanophotonics 8, 1559–1566 (2019).
Sinatkas, G., Christopoulos, T., Tsilipakos, O. & Kriezis, E. E. Electro-optic modulation in integrated photonics. J. Appl. Phys. 130, 010901 (2021).
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).
Gui, Y. et al. 100 ghz micrometer-compact broadband monolithic ito mach-zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics 11, 4001–4009 (2022).
Amin, R. et al. Sub-wavelength ghz-fast broadband ito mach-zehnder modulator on silicon photonics. Optica 7, 333–335 (2020).
Amin, R. et al. Ito-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019).
He, M. et al. High-performance hybrid silicon and lithium niobate mach-zehnder modulators for 100 gbit s-1 and beyond. Nat. Photonics 13, 359–364 (2019).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562, 101–104 (2018).
Abel, S. et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 4, 1671 (2013).
Eltes, F. et al. A batio 3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Light Technol. 37, 1456–1462 (2019).
Abel, S. et al. Large pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).
Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).
Miscuglio, M., Adam, G. C., Kuzum, D. & Sorger, V. J. Roadmap on material-function mapping for photonic-electronic hybrid neural networks. APL Mater. 7, 100903 (2019).
Taghavi, I. et al. Polymer modulators in silicon photonics: review and projections. Nanophotonics 11, 3855–3871347 (2022).
Xu, H. et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater. Horiz. 9, 261–270 (2022).
Burla, M. et al. 500 ghz plasmonic mach-zehnder modulator enabling sub-thz microwave photonics. APL Photonics 4, 056106 (2019).
Alloatti, L. et al. 100 GHz silicon-organic hybrid modulator. Light Sci. Appl. 3, 173–173 (2014).
Lu, G.-W. et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 gbits-1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 11, 1–9 (2020).
Schwarzenberger, A. et al. Cryogenic operation of a silicon-organic hybrid (soh) modulator at 50 gbit/s and 4 k ambient temperature. In: IEEE 2022 European Conference on Optical Communication (ECOC), pp. 1–6 (2022).
Habegger, P. et al. Plasmonic 100-GHz electro-optic modulators for cryogenic applications. In: European Conference and Exhibition on Optical Communication, Optica Publishing Group, pp. 1–1 (2022).
Hammond, S.R., O’Malleya, K.M., Xub, H., Elder, D.L. & Lewis, E.J. Organic electro-optic materials combining extraordinary nonlinearity with exceptional stability to enable commercial applications. In: SPIE Photonics West 11998, pp. 56–66 (2022).
Teng, C., Mortazavi, M. & Boudoughian, G. Origin of the poling-induced optical loss in a nonlinear optical polymeric waveguide. Appl. Phys. Lett. 66, 667–669 (1995).
Taghavi, I. et al. Enhanced poling and infiltration for highly efficient electro-optic polymer-based mach-zehnder modulators. Opt. Express 30, 27841–27857 (2022).
Schulz, K. M. et al. Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. Opt. Mater. Express 5, 1653–1660 (2015).
Jin, W. et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl. Phys. Lett. 104, 94–1 (2014).
Wang, C.-T. et al. Electrically tunable high q-factor micro-ring resonator based on blue phase liquid crystal cladding. Opt. Express 22, 17776–17781 (2014).
Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on silicon (lcos) devices. Light Sci. Appl. 3, 213–213 (2014).
Li, J. & Chu, D. Liquid crystal-based enclosed coplanar waveguide phase shifter for 54-66 ghz applications. Crystals 9, 650 (2019).
Ptasinski, J., Kim, S. W., Pang, L., Khoo, I.-C. & Fainman, Y. Optical tuning of silicon photonic structures with nematic liquid crystal claddings. Opt. Lett. 38, 2008–2010 (2013).
Lavrentovich, O. D. Ferroelectric nematic liquid crystal, a century in waiting. Proc. Natl. Acad. Sci. 117, 14629–14631 (2020).
Chen, X. et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Natl. Acad. Sci. 117, 14021–14031 (2020).
Kumari, P., Basnet, B., Wang, H. & Lavrentovich, O. D. Ferroelectric nematic liquids with conics. Nat. Commun. 14, 748 (2023).
Folcia, C. L., Ortega, J., Vidal, R., Sierra, T. & Etxebarria, J. An optimum liquid crystal candidate for nonlinear optics. Liq. Cryst. 49, 899–906 (2022).
Xia, R. et al. Achieving enhanced second-harmonic generation in ferroelectric nematics by doping d-π-a chromophores. J. Mater. Chem. C. 11, 10905–10910 (2023).
Chen, X. et al. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: polar monodomains and twisted state electro-optics. Proc. Natl Acad. Sci. 118, e2104092118 (2021).
Thomaschewski, M., Zenin, V. A., Wolff, C. & Bozhevolnyi, S. I. Plasmonic monolithic lithium niobate directional coupler switches. Nat. Commun. 11, 748 (2020).
Witmer, J. D. et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci. Technol. 5, 034004 (2020).
Singh, J. et al. Neuromorphic photonic circuit modeling in verilog-a. APL Photonics 7, 046103 (2022).
Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).
Ding, R. et al. Demonstration of a low v π l modulator with ghz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt. Express 18, 15618–15623 (2010).
Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photonics 138, 229–233 (2014).
Pan, Z. et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator. Laser Photonics Rev. 12, 1700300 (2018).
Inoue, S.-i & Otomo, A. Electro-optic polymer/silicon hybrid slow light modulator based on one- dimensional photonic crystal waveguides. Appl. Phys. Lett. 103, 171101 (2013).
Ummethala, S. et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 8, 511–519 (2021).
Heni, W. et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt. Express 25, 2627–2653 (2017).
Wang, G., Baehr-Jones, T., Hochberg, M. & Scherer, A. Design and fabrication of segmented, slotted waveguides for electro-optic modulation. Appl. Phys. Lett. 91, 143109 (2007).
Hochberg, M. et al. Segmented waveguides in thin silicon-on-insulator. J. Opt. Soc. Am. B 22, 1493–1497 (2005).
Gould, M. et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt. Express 19, 3952–3961 (2011).
Xu, H. et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from diels-alder cross-linkable binary molecular glasses. Chem. Mater. 32, 1408–1421 (2020).
Elder, D. L. et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem. Mater. 29, 6457–6471 (2017).
Witt, D., Young, J. & Chrostowski, L. Reinforcement learning for photonic component design. APL Photonics 8, 106101 (2023).
Darcie, A. et al. Siepicfab: the Canadian silicon photonics rapid-prototyping foundry for integrated optics and quantum computing. In: SPIE Silicon Photonics XVI, vol. 11691, pp. 31–50 (2021).
Wang, Y. et al. Apodized focusing fully etched subwavelength grating couplers. IEEE Photonics J. 7, 1–10 (2015).
Chiang, L.-Y. et al. Ferroelectric nematic liquid crystal-based silicon photonic modulator demonstrated at 102 Gbit/s PAM-4. arXiv https://arxiv.org/abs/2507.14724 (2025).
Yamaguchi, Y. et al. Traveling-wave Mach-Zehnder modulator integrated with electro-optic frequency-domain equalizer for broadband modulation. J. Light. Technol. 41, 3883–3891 (2023).
Luan, E. et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Sci. Rep. 13, 1260 (2023).
Mitchell, M. et al. Photonic wire bonding for silicon photonics iii-v laser integration. In: 2021 IEEE 17th International Conference on Group IV Photonics (GFP), pp. 1–2 (2021).
Wang, T. et al. Semiconductor optical amplifier (soa) integrated on a silicon photonic chip using photonic wire bonds (pwbs). In: SPIE Integrated Optics: Devices, Materials, and Technologies XXVIII, vol. 12889, pp. 131–137 (2024).
Palmer, R. et al. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material. J. Light. Technol. 32, 2726–2734 (2014).
Koeber, S. et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci. Appl. 4, 255–255 (2015).
Taghavi, I. et al. Enhanced polling and infiltration of highly-linear Mach-Zehnder modulators on si/sin-organic hybrid platform. In: CLEO: Science and Innovations, Optical Society of America, pp. 1–1 (2018).
Brosi, J.-M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).
Kamada, S. et al. Superiorly low half-wave voltage electro-optic polymer modulator for visible photonics. Opt. Express 30, 19771–19780 (2022).
Zhang, X. et al. Highly linear broadband optical modulator based on electro-optic polymer. IEEE Photonics J. 4, 2214–2228 (2012).
Qiu, F. et al. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators. Appl. Phys. Lett. 107, 92–1 (2015).
Taghavi, I. GHz-rate optical phase shift in light matter interaction-engineered, silicon-ferroelectric nematic liquid crystals. Figshare. https://doi.org/10.6084/m9.figshare.29817221.v2 (2025).
Park, J. W., You, J.-B., Kim, I. G. & Kim, G. High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a pn diode. Opt. Express 17, 15520–15524 (2009).