• Shekhar, S. et al. Roadmapping the next generation of silicon photonics. Nat. Commun. 15, 1–15 (2024).

    Article 

    Google Scholar
     

  • Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Enami, Y., Luo, J. & Jen, A. K. Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore. AIP Adv. 1, 042137 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Tahersima, M. H. et al. Coupling-enhanced dual ito layer electro-absorption modulator in silicon photonics. Nanophotonics 8, 1559–1566 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sinatkas, G., Christopoulos, T., Tsilipakos, O. & Kriezis, E. E. Electro-optic modulation in integrated photonics. J. Appl. Phys. 130, 010901 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gui, Y. et al. 100 ghz micrometer-compact broadband monolithic ito mach-zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics 11, 4001–4009 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amin, R. et al. Sub-wavelength ghz-fast broadband ito mach-zehnder modulator on silicon photonics. Optica 7, 333–335 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amin, R. et al. Ito-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019).

    Article 
    ADS 

    Google Scholar
     

  • He, M. et al. High-performance hybrid silicon and lithium niobate mach-zehnder modulators for 100 gbit s-1 and beyond. Nat. Photonics 13, 359–364 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abel, S. et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 4, 1671 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Eltes, F. et al. A batio 3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Light Technol. 37, 1456–1462 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abel, S. et al. Large pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miscuglio, M., Adam, G. C., Kuzum, D. & Sorger, V. J. Roadmap on material-function mapping for photonic-electronic hybrid neural networks. APL Mater. 7, 100903 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Taghavi, I. et al. Polymer modulators in silicon photonics: review and projections. Nanophotonics 11, 3855–3871347 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater. Horiz. 9, 261–270 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burla, M. et al. 500 ghz plasmonic mach-zehnder modulator enabling sub-thz microwave photonics. APL Photonics 4, 056106 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Alloatti, L. et al. 100 GHz silicon-organic hybrid modulator. Light Sci. Appl. 3, 173–173 (2014).

    Article 

    Google Scholar
     

  • Lu, G.-W. et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 gbits-1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 11, 1–9 (2020).

    ADS 

    Google Scholar
     

  • Schwarzenberger, A. et al. Cryogenic operation of a silicon-organic hybrid (soh) modulator at 50 gbit/s and 4 k ambient temperature. In: IEEE 2022 European Conference on Optical Communication (ECOC), pp. 1–6 (2022).

  • Habegger, P. et al. Plasmonic 100-GHz electro-optic modulators for cryogenic applications. In: European Conference and Exhibition on Optical Communication, Optica Publishing Group, pp. 1–1 (2022).

  • Hammond, S.R., O’Malleya, K.M., Xub, H., Elder, D.L. & Lewis, E.J. Organic electro-optic materials combining extraordinary nonlinearity with exceptional stability to enable commercial applications. In: SPIE Photonics West 11998, pp. 56–66 (2022).

  • Teng, C., Mortazavi, M. & Boudoughian, G. Origin of the poling-induced optical loss in a nonlinear optical polymeric waveguide. Appl. Phys. Lett. 66, 667–669 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taghavi, I. et al. Enhanced poling and infiltration for highly efficient electro-optic polymer-based mach-zehnder modulators. Opt. Express 30, 27841–27857 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz, K. M. et al. Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. Opt. Mater. Express 5, 1653–1660 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, W. et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl. Phys. Lett. 104, 94–1 (2014).

    Article 

    Google Scholar
     

  • Wang, C.-T. et al. Electrically tunable high q-factor micro-ring resonator based on blue phase liquid crystal cladding. Opt. Express 22, 17776–17781 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on silicon (lcos) devices. Light Sci. Appl. 3, 213–213 (2014).

    Article 

    Google Scholar
     

  • Li, J. & Chu, D. Liquid crystal-based enclosed coplanar waveguide phase shifter for 54-66 ghz applications. Crystals 9, 650 (2019).

    Article 

    Google Scholar
     

  • Ptasinski, J., Kim, S. W., Pang, L., Khoo, I.-C. & Fainman, Y. Optical tuning of silicon photonic structures with nematic liquid crystal claddings. Opt. Lett. 38, 2008–2010 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavrentovich, O. D. Ferroelectric nematic liquid crystal, a century in waiting. Proc. Natl. Acad. Sci. 117, 14629–14631 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Natl. Acad. Sci. 117, 14021–14031 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, P., Basnet, B., Wang, H. & Lavrentovich, O. D. Ferroelectric nematic liquids with conics. Nat. Commun. 14, 748 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folcia, C. L., Ortega, J., Vidal, R., Sierra, T. & Etxebarria, J. An optimum liquid crystal candidate for nonlinear optics. Liq. Cryst. 49, 899–906 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xia, R. et al. Achieving enhanced second-harmonic generation in ferroelectric nematics by doping d-π-a chromophores. J. Mater. Chem. C. 11, 10905–10910 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: polar monodomains and twisted state electro-optics. Proc. Natl Acad. Sci. 118, e2104092118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomaschewski, M., Zenin, V. A., Wolff, C. & Bozhevolnyi, S. I. Plasmonic monolithic lithium niobate directional coupler switches. Nat. Commun. 11, 748 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witmer, J. D. et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci. Technol. 5, 034004 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Singh, J. et al. Neuromorphic photonic circuit modeling in verilog-a. APL Photonics 7, 046103 (2022).

  • Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding, R. et al. Demonstration of a low v π l modulator with ghz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt. Express 18, 15618–15623 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photonics 138, 229–233 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pan, Z. et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator. Laser Photonics Rev. 12, 1700300 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Inoue, S.-i & Otomo, A. Electro-optic polymer/silicon hybrid slow light modulator based on one- dimensional photonic crystal waveguides. Appl. Phys. Lett. 103, 171101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ummethala, S. et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 8, 511–519 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Heni, W. et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt. Express 25, 2627–2653 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, G., Baehr-Jones, T., Hochberg, M. & Scherer, A. Design and fabrication of segmented, slotted waveguides for electro-optic modulation. Appl. Phys. Lett. 91, 143109 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Hochberg, M. et al. Segmented waveguides in thin silicon-on-insulator. J. Opt. Soc. Am. B 22, 1493–1497 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gould, M. et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt. Express 19, 3952–3961 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H. et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from diels-alder cross-linkable binary molecular glasses. Chem. Mater. 32, 1408–1421 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Elder, D. L. et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem. Mater. 29, 6457–6471 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Witt, D., Young, J. & Chrostowski, L. Reinforcement learning for photonic component design. APL Photonics 8, 106101 (2023).

  • Darcie, A. et al. Siepicfab: the Canadian silicon photonics rapid-prototyping foundry for integrated optics and quantum computing. In: SPIE Silicon Photonics XVI, vol. 11691, pp. 31–50 (2021).

  • Wang, Y. et al. Apodized focusing fully etched subwavelength grating couplers. IEEE Photonics J. 7, 1–10 (2015).

    Article 

    Google Scholar
     

  • Chiang, L.-Y. et al. Ferroelectric nematic liquid crystal-based silicon photonic modulator demonstrated at 102 Gbit/s PAM-4. arXiv https://arxiv.org/abs/2507.14724 (2025).

  • Yamaguchi, Y. et al. Traveling-wave Mach-Zehnder modulator integrated with electro-optic frequency-domain equalizer for broadband modulation. J. Light. Technol. 41, 3883–3891 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luan, E. et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Sci. Rep. 13, 1260 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, M. et al. Photonic wire bonding for silicon photonics iii-v laser integration. In: 2021 IEEE 17th International Conference on Group IV Photonics (GFP), pp. 1–2 (2021).

  • Wang, T. et al. Semiconductor optical amplifier (soa) integrated on a silicon photonic chip using photonic wire bonds (pwbs). In: SPIE Integrated Optics: Devices, Materials, and Technologies XXVIII, vol. 12889, pp. 131–137 (2024).

  • Palmer, R. et al. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material. J. Light. Technol. 32, 2726–2734 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koeber, S. et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci. Appl. 4, 255–255 (2015).

    Article 

    Google Scholar
     

  • Taghavi, I. et al. Enhanced polling and infiltration of highly-linear Mach-Zehnder modulators on si/sin-organic hybrid platform. In: CLEO: Science and Innovations, Optical Society of America, pp. 1–1 (2018).

  • Brosi, J.-M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamada, S. et al. Superiorly low half-wave voltage electro-optic polymer modulator for visible photonics. Opt. Express 30, 19771–19780 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Highly linear broadband optical modulator based on electro-optic polymer. IEEE Photonics J. 4, 2214–2228 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Qiu, F. et al. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators. Appl. Phys. Lett. 107, 92–1 (2015).

    Article 

    Google Scholar
     

  • Taghavi, I. GHz-rate optical phase shift in light matter interaction-engineered, silicon-ferroelectric nematic liquid crystals. Figshare. https://doi.org/10.6084/m9.figshare.29817221.v2 (2025).

  • Park, J. W., You, J.-B., Kim, I. G. & Kim, G. High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a pn diode. Opt. Express 17, 15520–15524 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar