• Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961).

    Article 
    CAS 

    Google Scholar
     

  • Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev. 124, 246–254 (1961).

    Article 
    CAS 

    Google Scholar
     

  • Herbut, I. F. Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97, 146401 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Herbut, I. F., Juričić, V. & Roy, B. Theory of interacting electrons on the honeycomb lattice. Phys. Rev. B 79, 085116 (2009).

    Article 

    Google Scholar
     

  • Herbut, I. F., Juričić, V. & Vafek, O. Relativistic Mott criticality in graphene. Phys. Rev. B 80, 075432 (2009).

    Article 

    Google Scholar
     

  • Juričić, V., Herbut, I. F. & Semenoff, G. W. Coulomb interaction at the metal–insulator critical point in graphene. Phys. Rev. B 80, 081405 (2009).

    Article 

    Google Scholar
     

  • Ryu, S., Mudry, C., Hou, C.-Y. & Chamon, C. Masses in graphenelike two-dimensional electronic systems: topological defects in order parameters and their fractional exchange statistics. Phys. Rev. B 80, 205319 (2009).

    Article 

    Google Scholar
     

  • Weeks, C. & Franz, M. Interaction-driven instabilities of a Dirac semimetal. Phys. Rev. B 81, 085105 (2010).

    Article 

    Google Scholar
     

  • Semenoff, G. W. Chiral symmetry breaking in graphene. Phys. Scr. 2012, 014016 (2012).

    Article 

    Google Scholar
     

  • González, J. Electron self-energy effects on chiral symmetry breaking in graphene. Phys. Rev. B 85, 085420 (2012).

    Article 

    Google Scholar
     

  • Assaad, F. F. & Herbut, I. F. Pinning the order: the nature of quantum criticality in the Hubbard model on honeycomb lattice. Phys. Rev. 3, 031010 (2013).

    Article 
    CAS 

    Google Scholar
     

  • García-Martínez, N. A., Grushin, A. G., Neupert, T., Valenzuela, B. & Castro, E. V. Interaction-driven phases in the half-filled spinless honeycomb lattice from exact diagonalization. Phys. Rev. B 88, 245123 (2013).

    Article 

    Google Scholar
     

  • Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430–433 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutiérrez, C. et al. Imaging chiral symmetry breaking from Kekulé bond order in graphene. Nat. Phys. 12, 950–958 (2016).

    Article 

    Google Scholar
     

  • Bao, C. et al. Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene. Phys. Rev. Lett. 126, 206804 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article 

    Google Scholar
     

  • Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angeli, M. & MacDonald, A. H.Γ valley transition metal dichalcogenide moiré bands. Proc. Natl Acad. Sci. USA 118, e2021826118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, H., Kim, E.-A. & Jian, C.-M. Realizing a tunable honeycomb lattice in ABBA-stacked twisted double bilayer WSe2. Phys. Rev. Res. 5, 043173 (2023).

  • Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foutty, B. A. et al. Tunable spin and valley excitations of correlated insulators in Γ-valley moiré bands. Nat. Mater. 22, 731–736 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K. et al. Double quantum spin Hall phase in Moiré WSe2. Nano Lett. 24, 14901–14907 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8, 550–556 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J., Bernevig, B. A. & Vafek, O. Cascades between light and heavy fermions in the normal state of magic-angle twisted bilayer graphene. Phys. Rev. Lett. 127, 266402 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lifshitz, L. M. & Kosevich, A. M. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636 (1956).


    Google Scholar
     

  • Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar