• Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photon. 8, 195–204 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Suzuki, T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 31, 265–318 (2012).

    Article 

    Google Scholar
     

  • Durfee, C. G., Backus, S., Kapteyn, H. C. & Murnane, M. M. Intense 8-fs pulse generation in the deep ultraviolet. Opt. Lett. 24, 697–699 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Kida, Y., Liu, J., Teramoto, T. & Kobayashi, T. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing. Opt. Lett. 35, 1807–1809 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Baum, P., Lochbrunner, S. & Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Opt. Lett. 29, 1686–1688 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Baum, P., Lochbrunner, S. & Riedle, E. Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management. Appl. Phys. B 79, 1027–1032 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kosma, K., Trushin, S. A., Schmid, W. E. & Fuss, W. Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 33, 723–725 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Graf, U. et al. Intense few-cycle light pulses in the deep ultraviolet. Opt. Express 16, 18956–18963 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Reiter, F. et al. Generation of sub-3 fs pulses in the deep ultraviolet. Opt. Lett. 35, 2248–2250 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Bothschafter, E. M. et al. Collinear generation of ultrashort UV and XUV pulses. Opt. Express 18, 9173–9180 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Galli, M. et al. Generation of deep ultraviolet sub-2-fs pulses. Opt. Lett. 44, 1308–1311 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article 

    Google Scholar
     

  • Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. 1. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Opt. Express 21, 10942–10953 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Im, S. J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express 18, 5367–5374 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. J. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 4, 1272–1276 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Brahms, C. & Travers, J. C. HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources. APL Photon. 9, 050901 (2024).

  • Brahams, C., Belli, F. & Travers, J. C. Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients. Opt. Lett. 45, 4456–4459 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep UV pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Pulses (Springer, 2000).

  • Sekikawa, T., Katsura, T., Miura, S. & Watanabe, S. Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Kosuge, A. et al. Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet. Phys. Rev. Lett. 97, 263901 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Brahms, C. & Travers, J. C. Luna.jl. Zenodo https://zenodo.org/badge/latestdoi/190623784 (2022).

  • Kitamura, R., Pilon, L. & Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46, 8118–8133 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kotsina, N., Brahms, C., Jackson, S. L., Travers, J. C. & Townsend, D. Spectroscopic application of few-femtosecond deep-ultraviolet laser pulses from resonant dispersive wave emission in a hollow capillary fibre. Chem. Sci. 13, 9586–9594 (2022).

    Article 

    Google Scholar
     

  • Lee, J. P. et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV–vis pump pulses. Optica 11, 1320–1323 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wanie, V. et al. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 630, 109–115 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Escoto, E., Tajalli, A., Nagy, T. & Steinmeyer, G. Advanced phase retrieval for dispersion scan: a comparative study. J. Opt. Soc. Am. B 35, 8–19 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Geib, N. C., Zilk, M., Pertsch, T. & Eilenberger, F. Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses. Optica 6, 495–505 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dorrer, C. & Walmsley, I. A. Accuracy criterion for ultrashort pulse characterization techniques: application to spectral phase interferometry for direct electric field reconstruction. J. Opt. Soc. Am. B 19, 1019–1029 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Carlström, S., Spanner, M. & Patchkovskii, S. General time-dependent configuration-interaction singles. I. Molecular case. Phys. Rev. A 106, 043104 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Carlström, S., Bertolino, M., Dahlström, J. M. & Patchkovskii, S. General time-dependent configuration-interaction singles. II. Atomic case. Phys. Rev. A 106, 042806 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Varshalovich, D. A., Moskalev, A. N. & Khersonskii, V. K. Quantum Theory of Angular Momentum (World Scientific, 1988).

  • Manolopoulos, D. E. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys. 117, 9552–9559 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Tao, L. & Scrinzi, A. Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method. New J. Phys. 14, 013021 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Morales, F., Bredtmann, T. & Patchkovskii, S. iSURF: a family of infinite-time surface flux methods. J. Phys. B 49, 245001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Saloman, E. B. Energy levels and observed spectral lines of xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data 33, 765–921 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hansen, J. E. & Persson, W. Revised analysis of singly ionized xenon, Xe II. Phys. Scr. 36, 602 (1987).

    Article 
    ADS 

    Google Scholar