Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photon. 8, 195–204 (2014).
Suzuki, T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 31, 265–318 (2012).
Durfee, C. G., Backus, S., Kapteyn, H. C. & Murnane, M. M. Intense 8-fs pulse generation in the deep ultraviolet. Opt. Lett. 24, 697–699 (1999).
Kida, Y., Liu, J., Teramoto, T. & Kobayashi, T. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing. Opt. Lett. 35, 1807–1809 (2010).
Baum, P., Lochbrunner, S. & Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Opt. Lett. 29, 1686–1688 (2004).
Baum, P., Lochbrunner, S. & Riedle, E. Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management. Appl. Phys. B 79, 1027–1032 (2004).
Kosma, K., Trushin, S. A., Schmid, W. E. & Fuss, W. Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 33, 723–725 (2008).
Graf, U. et al. Intense few-cycle light pulses in the deep ultraviolet. Opt. Express 16, 18956–18963 (2008).
Reiter, F. et al. Generation of sub-3 fs pulses in the deep ultraviolet. Opt. Lett. 35, 2248–2250 (2010).
Bothschafter, E. M. et al. Collinear generation of ultrashort UV and XUV pulses. Opt. Express 18, 9173–9180 (2010).
Galli, M. et al. Generation of deep ultraviolet sub-2-fs pulses. Opt. Lett. 44, 1308–1311 (2019).
Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).
Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399 (2002).
Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. 1. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).
Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).
Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Opt. Express 21, 10942–10953 (2013).
Im, S. J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express 18, 5367–5374 (2010).
Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).
Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).
Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. J. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 4, 1272–1276 (2017).
Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).
Brahms, C. & Travers, J. C. HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources. APL Photon. 9, 050901 (2024).
Brahams, C., Belli, F. & Travers, J. C. Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients. Opt. Lett. 45, 4456–4459 (2020).
Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep UV pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).
Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Pulses (Springer, 2000).
Sekikawa, T., Katsura, T., Miura, S. & Watanabe, S. Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002).
Kosuge, A. et al. Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet. Phys. Rev. Lett. 97, 263901 (2006).
Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).
Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 (1997).
Brahms, C. & Travers, J. C. Luna.jl. Zenodo https://zenodo.org/badge/latestdoi/190623784 (2022).
Kitamura, R., Pilon, L. & Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46, 8118–8133 (2007).
Kotsina, N., Brahms, C., Jackson, S. L., Travers, J. C. & Townsend, D. Spectroscopic application of few-femtosecond deep-ultraviolet laser pulses from resonant dispersive wave emission in a hollow capillary fibre. Chem. Sci. 13, 9586–9594 (2022).
Lee, J. P. et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV–vis pump pulses. Optica 11, 1320–1323 (2024).
Wanie, V. et al. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 630, 109–115 (2024).
Escoto, E., Tajalli, A., Nagy, T. & Steinmeyer, G. Advanced phase retrieval for dispersion scan: a comparative study. J. Opt. Soc. Am. B 35, 8–19 (2018).
Geib, N. C., Zilk, M., Pertsch, T. & Eilenberger, F. Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses. Optica 6, 495–505 (2019).
Dorrer, C. & Walmsley, I. A. Accuracy criterion for ultrashort pulse characterization techniques: application to spectral phase interferometry for direct electric field reconstruction. J. Opt. Soc. Am. B 19, 1019–1029 (2002).
Carlström, S., Spanner, M. & Patchkovskii, S. General time-dependent configuration-interaction singles. I. Molecular case. Phys. Rev. A 106, 043104 (2022).
Carlström, S., Bertolino, M., Dahlström, J. M. & Patchkovskii, S. General time-dependent configuration-interaction singles. II. Atomic case. Phys. Rev. A 106, 042806 (2022).
Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).
Varshalovich, D. A., Moskalev, A. N. & Khersonskii, V. K. Quantum Theory of Angular Momentum (World Scientific, 1988).
Manolopoulos, D. E. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys. 117, 9552–9559 (2002).
Tao, L. & Scrinzi, A. Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method. New J. Phys. 14, 013021 (2012).
Morales, F., Bredtmann, T. & Patchkovskii, S. iSURF: a family of infinite-time surface flux methods. J. Phys. B 49, 245001 (2016).
Saloman, E. B. Energy levels and observed spectral lines of xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data 33, 765–921 (2004).
Hansen, J. E. & Persson, W. Revised analysis of singly ionized xenon, Xe II. Phys. Scr. 36, 602 (1987).