• 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 19, 1598–1695 (2023).

  • Campion D, et al. Early-onset autosomal dominant alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999;65:664–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherrington R, et al. Cloning of a gene bearing missense mutations in early-onset Familial alzheimer’s disease. Nature. 1995;375:754–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogaev EI, et al. Familial alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the alzheimer’s disease type 3 gene. Nature. 1995;376:775–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanoiselée HM et al. APP, PSEN1, and PSEN2 mutations in early-onset alzheimer disease: A genetic screening study of Familial and sporadic cases. PLoS Med 14, (2017).

  • Goldman JS, et al. Genetic counseling and testing for alzheimer disease: joint practice guidelines of the American college of medical genetics and the National society of genetic counselors. Genet Sci. 2011;13:597.


    Google Scholar
     

  • Pilotto A, Padovani A, Borroni B, Clinical. Biological, and Imaging Features of Monogenic Alzheimer’s Disease. Biomed Res Int 2013, (2013).

  • Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genetics in Medicine 2018 20:10 20, 1122–1130 (2018).

  • Carmona S, Hardy J, Guerreiro R. The genetic landscape of alzheimer disease. Handb Clin Neurol. 2018;148:395–408.

    Article 
    PubMed 

    Google Scholar
     

  • Bellenguez C, et al. New insights into the genetic etiology of alzheimer’s disease and related dementias. Nat Genet. 2022;2022:1–25. https://doi.org/10.1038/s41588-022-01024-z.

    Article 
    CAS 

    Google Scholar
     

  • de Rojas I, et al. Common variants in alzheimer’s disease and risk stratification by polygenic risk scores. Nat Commun. 2021;12:3417.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wightman DP, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for alzheimer’s disease. Nat Genet. 2021;53:1276–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escott-Price V, et al. Polygenic score prediction captures nearly all common genetic risk for alzheimer’s disease. Neurobiol Aging. 2016;0:3–1342.


    Google Scholar
     

  • Chaudhury S et al. Alzheimer’s disease polygenic risk score as a predictor of conversion from mild-cognitive impairment. Translational Psychiatry 2019 9:1 9, 1–7 (2019).

  • Martiskainen H, et al. Effects of alzheimer’s disease-Associated risk loci on cerebrospinal fluid biomarkers and disease progression: A polygenic risk score approach. J Alzheimer’s Disease. 2015;43:565–73.

    Article 
    CAS 

    Google Scholar
     

  • Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12:1–11.

    Article 

    Google Scholar
     

  • Läll K, Mägi R, Morris A, Metspalu A, Fischer K. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med. 2017;19:322–9.

    Article 
    PubMed 

    Google Scholar
     

  • Tesi N, et al. Polygenic risk score of longevity predicts longer survival across an age continuum. Journals Gerontology: Ser A. 2021;76:750–9.

    CAS 

    Google Scholar
     

  • Fahed AC, Philippakis AA, Khera AV. The potential of polygenic scores to improve cost and efficiency of clinical trials. Nature Communications 2022 13:1 13, 1–4 (2022).

  • Guerreiro R, et al. TREM2 variants in alzheimer’s disease. N Engl J Med. 2013;368:117–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonsson T, et al. Variant of TREM2 associated with the risk of alzheimer’s disease. N Engl J Med. 2013;368:107–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sims R et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in alzheimer’s disease. Nat Genet 49, (2017).

  • Holstege H, et al. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for alzheimer’s disease. Nat Genet. 2022;2022:1–9. https://doi.org/10.1038/s41588-022-01208-7.

    Article 
    CAS 

    Google Scholar
     

  • Jin SC, et al. Coding variants in TREM2 increase risk for alzheimer’s disease. Hum Mol Genet. 2014;23:5838–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jay TR, Saucken V, V. E., Landreth GE. TREM2 in Neurodegenerative Diseases. Molecular Neurodegeneration 2017 12:1 12, 1–33 (2017).

  • Corder E, Saunders A. Gene dose of Apolipoprotein E type 4 allele and the risk of alzheimer’s disease in late onset families. Sci (1979). 1993;8:41–3.


    Google Scholar
     

  • Corder EH, et al. Protective effect of Apolipoprotein E type 2 allele for late onset alzheimer disease. Nat Genet. 1994;7:180–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubin R. Studying how genomic variation affects human health. JAMA 326, (2021).

  • Chia R, et al. Genome sequencing analysis identifies new loci associated with lewy body dementia and provides insights into its genetic architecture. Nat Genet. 2021;53:294–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Medicine 2021 13:1 13, 1–13 (2021).

  • Van Lee D. S. J. Prevalence of pathogenic variants and eligibility criteria for genetic testing in patients who visit a memory clinic. Neurology 104, (2025).

  • Van Der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. J Alzheimer’s Disease. 2018;62:1091–111. (J Alzheimers Dis.

    Article 

    Google Scholar
     

  • Van Der Flier WM et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. 41, 313–327 (2014).

  • McKhann G, et al. Clinical diagnosis of alzheimer’s disease: report of the NINCDS-ADRDA work group⋆ under the auspices of department of health and human services task force on alzheimer’s disease. Neurology. 1984;34:939–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubois B, et al. Research criteria for the diagnosis of alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.

    Article 
    PubMed 

    Google Scholar
     

  • Neary D, et al. Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester groups. J Neurol Neurosurg Psychiatry. 1994;57:416.

    Article 

    Google Scholar
     

  • McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. Journal of Alzheimer’s Disease 9, 417–423 (2006).

  • McKeith IG, et al. Diagnosis and management of dementia with lewy bodies. Neurology. 2017;89:88–100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen RC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKhann GM, et al. The diagnosis of dementia due to alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–9.

    Article 

    Google Scholar
     

  • Jack CR, et al. NIA-AA research framework: toward a biological definition of alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–62.

    Article 

    Google Scholar
     

  • Das S, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchsberger C, Abecasis GR, Hinds D. A. minimac2: faster genotype imputation. Bioinformatics. 2015;31:782–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taliun D et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 2021 590:7845 590, 290–299 (2021).

  • Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holm SA, Simple Sequentially. Rejective multiple test procedure. Scand J Stat. 1979. https://doi.org/10.2307/4615733.

    Article 

    Google Scholar
     

  • Liu X, Li C, Mou C, Dong Y, Tu Y. DbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020;12:1–8.

    Article 

    Google Scholar
     

  • Karczewski KJ et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020 581:7809 581, 434–443 (2020).

  • Schramm C et al. Penetrance Estimation of alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes. Genome Med 14, (2022).

  • Corder EH, et al. Gene dose of Apolipoprotein E type 4 allele and the risk of alzheimer’s disease in late onset families. Science. 1993;261:921–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duncan L et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nature Communications 2019 10:1 10, 1–9 (2019).

  • Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007;17:1520–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    Article 
    PubMed Central 

    Google Scholar
     

  • Kim DH, et al. Genetic markers for diagnosis and pathogenesis of alzheimer’s disease. Gene. 2014;545:185–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escott-Price V, Schmidt KM. Probability of alzheimer’s disease based on common and rare genetic variants. Alzheimers Res Ther. 2021;13:1–9.


    Google Scholar
     

  • Guerreiro R, et al. Investigating the genetic architecture of dementia with lewy bodies: a two-stage genome-wide association study. Lancet Neurol. 2018;17:64–74.

    Article 
    PubMed 

    Google Scholar
     

  • Rongve A et al. GBA and APOE ε4 associate with sporadic dementia with lewy bodies in European genome wide association study. Sci Rep 9, (2019).

  • Pottier C, et al. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol. 2019;137:879–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pottier C, et al. Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal dementia and GRN mutations: a genome-wide association study. Lancet Neurol. 2018;17:548.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsumata Y, et al. Multiple gene variants linked to Alzheimer’s-type clinical dementia via GWAS are also associated with non-Alzheimer’s neuropathologic entities. Neurobiol Dis. 2022;174:105880.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugan AJ, et al. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Commun. 2021;9:1–18.

    Article 

    Google Scholar
     

  • Robinson JL, et al. Pathological combinations in neurodegenerative disease are heterogeneous and disease-associated. Brain. 2023;146:2557–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolas G et al. Assessment of Mendelian and risk-factor genes in alzheimer disease: A prospective nationwide clinical utility study and recommendations for genetic screening. Genet Sci 26, (2024).

  • Jensen AMG et al. The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant alzheimer’s disease. Proc Natl Acad Sci U S A 121, (2024).

  • Fazeli E, Fazeli E, Fojtík P, Holstege H, Andersen OM. Functional characterization of SORL1 variants in cell-based assays to investigate variant pathogenicity. Philosophical Trans Royal Soc B: Biol Sci 379, (2024).

  • Hung C et al. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep 35, (2021).

  • Fazeli E et al. A Familial missense variant in the alzheimer’s disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 147, (2024).

  • Nicolas A et al. Transferability of a European-derived Alzheimer’s Disease Genetic Risk Score across Multi-Ancestry Populations. medRxiv (2023).

  • Escott-Price V, et al. Common polygenic variation enhances risk prediction for alzheimer’s disease. Brain. 2015;138:3673–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Lee D. Genetics contributes to concomitant pathology and clinical presentation in dementia with lewy bodies. J Alzheimers Dis. 2021;83:269–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sleegers K, et al. A 22-single nucleotide polymorphism alzheimer’s disease risk score correlates with family history, onset age, and cerebrospinal fluid Aβ 42. Alzheimer’s Dement. 2015;11:1452–60.

    Article 

    Google Scholar
     

  • Chouraki V, et al. Evaluation of a genetic risk score to improve risk prediction for alzheimer’s disease. J Alzheimer’s Disease. 2016;53:921–32.

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Rodríguez E, et al. Genetic risk score predicting accelerated progression from mild cognitive impairment to alzheimer’s disease. J Neural Transm. 2013;120:807–12.

    Article 
    PubMed 

    Google Scholar
     

  • Klunk WE. Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk-prediction for alzheimer dementia. Neurobiol Aging. 2011;32:S20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edison P, et al. Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. NeuroImage. 2013;70:423–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomassen J et al. Abnormal cerebrospinal fluid levels of amyloid and Tau are associated with cognitive decline over time in cognitively normal older adults: A monozygotic twin study. Alzheimers Dement (N Y) 8, (2022).

  • Palmqvist S, et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying early alzheimer disease. Neurology. 2015;85:1240.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaffer JL, et al. Predicting cognitive decline in subjects at risk for alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology. 2013;266:583–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh T, et al. Outreach, screening, and randomization of APOE ε4 carriers into an alzheimer’s prevention trial: A global perspective from the API generation program. J Prev Alzheimers Dis. 2023;10:453.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ALZ-801 for Early Alzheimer’s in People With the APOE4/4 Genotype. (APOLLOE4). https://www.alzheimers.gov/clinical-trials/alz-801-early-alzheimers-people-apoe4-4-genotype-apolloe4

  • Jackson S et al. INVOKE-2 – A Phase 2 Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of AL002 in Participants with Early Alzheimer’s Disease (P17-3.005). Neurology 98, (2022).

  • Study Details |. First in Human Study for Safety and Tolerability of AL003. | ClinicalTrials.gov. https://www.clinicaltrials.gov/study/NCT03822208?cond=Alzheimer Disease&term = AL003&rank = 1.