• Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klatt, J. M., Chennu, A., Arbic, B. K., Biddanda, B. A. & Dick, G. J. Possible link between Earth’s rotation rate and oxygenation. Nat. Geosci. 14, 564–570 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitchell, R. N. et al. The supercontinent cycle. Nat. Rev. Earth Environ. 2, 358–374 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Eguchi, J., Diamond, C. W. & Lyons, T. W. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions. PNAS Nexus 1, pgac036 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louca, S. et al. Bacterial diversification through geological time. Nat. Ecol. Evol. 2, 1458–1467 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Weinbauer, M. & Rassoulzadegan, F. REVIEW: Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).

  • Butterfield, N. J. The neoproterozoic. Curr. Biol. 25, R859–R863 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoll, A. H. Paleobiological perspectives on early microbial evolution. Cold Spring Harb. Perspect. Biol. 7, a018093 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoll, A. H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. https://doi.org/10.1515/9781400866045 (2015).

  • Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik, T. & Smith, H. L. Does dormancy increase fitness of bacterial populations in time-varying environments? Bull. Math. Biol. 70, 1140–1162 (2008).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Epstein, S. S. Microbial awakenings. Nature 457, 1083 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Măgălie, A., Schwartz, D. A., Lennon, J. T. & Weitz, J. S. Optimal dormancy strategies in fluctuating environments given delays in phenotypic switching. J. Theor. Biol. 561, 111413 (2023).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shade, A. Microbiome rescue: directing resilience of environmental microbial communities. Curr. Opin. Microbiol. 72, 102263 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).

    Article 

    Google Scholar
     

  • Warner, R. R. & Chesson, P. L. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am. Nat. 125, 769–787 (1985).

    Article 

    Google Scholar
     

  • Lennon, J. T., den Hollander, F., Wilke-Berenguer, M. & Blath, J. Principles of seed banks and the emergence of complexity from dormancy. Nat. Commun. 12, 4807 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verin, M. & Tellier, A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 72, https://doi.org/10.1111/evo.13483 (2018).

  • Sellinger, T., Müller, J., Hösel, V. & Tellier, A. Are the better cooperators dormant or quiescent? Math. Biosci. 318, 108272 (2019).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Shoemaker, W. R., Polezhaeva, E., Givens, K. B. & Lennon, J. T. Seed banks alter the molecular evolutionary dynamics of Bacillus subtilis. Genetics 221, iyac071 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoemaker, W. R. & Lennon, J. T. Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol. Appl. 11, 60–75 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz, D. A., Shoemaker, W. R., Măgălie, A., Weitz, J. S. & Lennon, J. T. Bacteria-phage coevolution with a seed bank. ISME J. 17, 1315–1325 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorensen, J. W. & Shade, A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190255 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dzialowski, A. R., Lennon, J. T., O’Brien, W. J. & Smith, V. H. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshw. Biol. 48, 1593–1602 (2003).

  • Rengefors, K., Karlsson, I. & Hansson, L. A. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. B Biol. Sci. 265, 1353–1358 (1998).

  • Bryan, D., El-Shibiny, A., Hobbs, Z., Porter, J. & Kutter, E. M. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front. Microbiol. 7, 1391 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bautista, M. A., Zhang, C. & Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. mBio 6, e02565-14 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulbudak, H. & Weitz, J. S. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc. R. Soc. B Biol. Sci. 283, 20161037 (2016).

    Article 

    Google Scholar
     

  • Blagodatsky, S. A., Heinemeyer, O. & Richter, J. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biol. Fertil. Soils 32, 73–81 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. S., Mayes, M. A., Gu, L. H. & Schadt, C. W. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE 9, e89252 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zha, J. & Zhuang, Q. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).

  • Lennon, J. T. et al. Priorities, opportunities, and challenges for integrating microorganisms into Earth system models for climate change prediction. mBio 15, e0045524 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests. J. Geophys. Res. Biogeosci. 120, 2596–2611 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lyu, Z. et al. Seasonal dynamics of Arctic soils: capturing year-round processes in measurements and soil biogeochemical models. Earth Sci. Rev. 254, 104820 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bradley, J. et al. Active and dormant microorganisms on glacier surfaces. Geobiology 21, 244–261 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greening, C., Grinter, R. & Chiri, E. Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems 4, e00107–e00119 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl Acad. Sci. USA 111, 4257–4261 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta 286, 227–247 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bradley, J. A., Arndt, S., Amend, J. P., Burwicz-Galerne, E. & LaRowe, D. E. Sources and fluxes of organic carbon and energy to microorganisms in global marine sediments. Front. Microbiol. 13, 910694 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradley, J. A., Hülse, D., LaRowe, D. E. & Arndt, S. Transfer efficiency of organic carbon in marine sediments. Nat. Commun. 13, 7297 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

  • Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 1382–1386 (1991).

    Article 

    Google Scholar
     

  • Pirt, S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B Biol. Sci. 163, 224–231 (1965).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Westerhoff, H. V., Hellingwerf, K. J. & Van Dam, K. Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc. Natl Acad. Sci. USA 80, 305–309 (1983).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita, R. Y. Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman & Hall microbiology series. (Chapman & Hall, New York, ©1997).

  • Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaRowe, D. E. & Amend, J. P. Power limits for microbial life. Front. Microbiol. 6, 1–11 (2015).

  • Marschall, E., Jogler, M., Henßge, U. & Overmann, J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ. Microbiol. 12, 1348–1362 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradley, J. A., Amend, J. P. & LaRowe, D. E. Survival of the fewest: microbial dormancy and maintenance in marine sediments through deep time. Geobiology 17, 43–59 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jørgensen, B. B. Deep subseafloor microbial cells on physiological standby. Proc. Natl Acad. Sci. USA 108, 18193–18194 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Grossart, H. P., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, 2–20 (2020).

  • Shi, Y., Tyson, G. W., Eppley, J. M. & Delong, E. F. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 5, 999–1013 (2011).

  • Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0323-1 (2020).

  • Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 11, 1949 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, D. C., Algar, C. K., Huber, J. A. & Dick, G. J. Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc. Natl Acad. Sci. USA 111, 1879–1884 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar