Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Klatt, J. M., Chennu, A., Arbic, B. K., Biddanda, B. A. & Dick, G. J. Possible link between Earth’s rotation rate and oxygenation. Nat. Geosci. 14, 564–570 (2021).
Mitchell, R. N. et al. The supercontinent cycle. Nat. Rev. Earth Environ. 2, 358–374 (2021).
Eguchi, J., Diamond, C. W. & Lyons, T. W. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions. PNAS Nexus 1, pgac036 (2022).
Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).
Louca, S. et al. Bacterial diversification through geological time. Nat. Ecol. Evol. 2, 1458–1467 (2018).
Weinbauer, M. & Rassoulzadegan, F. REVIEW: Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).
Butterfield, N. J. The neoproterozoic. Curr. Biol. 25, R859–R863 (2015).
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
Knoll, A. H. Paleobiological perspectives on early microbial evolution. Cold Spring Harb. Perspect. Biol. 7, a018093 (2015).
Knoll, A. H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. https://doi.org/10.1515/9781400866045 (2015).
Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).
Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).
Malik, T. & Smith, H. L. Does dormancy increase fitness of bacterial populations in time-varying environments? Bull. Math. Biol. 70, 1140–1162 (2008).
Epstein, S. S. Microbial awakenings. Nature 457, 1083 (2009).
Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).
Măgălie, A., Schwartz, D. A., Lennon, J. T. & Weitz, J. S. Optimal dormancy strategies in fluctuating environments given delays in phenotypic switching. J. Theor. Biol. 561, 111413 (2023).
Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997).
Shade, A. Microbiome rescue: directing resilience of environmental microbial communities. Curr. Opin. Microbiol. 72, 102263 (2023).
Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
Warner, R. R. & Chesson, P. L. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am. Nat. 125, 769–787 (1985).
Lennon, J. T., den Hollander, F., Wilke-Berenguer, M. & Blath, J. Principles of seed banks and the emergence of complexity from dormancy. Nat. Commun. 12, 4807 (2021).
Verin, M. & Tellier, A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 72, https://doi.org/10.1111/evo.13483 (2018).
Sellinger, T., Müller, J., Hösel, V. & Tellier, A. Are the better cooperators dormant or quiescent? Math. Biosci. 318, 108272 (2019).
Shoemaker, W. R., Polezhaeva, E., Givens, K. B. & Lennon, J. T. Seed banks alter the molecular evolutionary dynamics of Bacillus subtilis. Genetics 221, iyac071 (2022).
Shoemaker, W. R. & Lennon, J. T. Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol. Appl. 11, 60–75 (2018).
Schwartz, D. A., Shoemaker, W. R., Măgălie, A., Weitz, J. S. & Lennon, J. T. Bacteria-phage coevolution with a seed bank. ISME J. 17, 1315–1325 (2023).
Sorensen, J. W. & Shade, A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190255 (2020).
Dzialowski, A. R., Lennon, J. T., O’Brien, W. J. & Smith, V. H. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshw. Biol. 48, 1593–1602 (2003).
Rengefors, K., Karlsson, I. & Hansson, L. A. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. B Biol. Sci. 265, 1353–1358 (1998).
Bryan, D., El-Shibiny, A., Hobbs, Z., Porter, J. & Kutter, E. M. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front. Microbiol. 7, 1391 (2016).
Bautista, M. A., Zhang, C. & Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. mBio 6, e02565-14 (2015).
Gulbudak, H. & Weitz, J. S. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc. R. Soc. B Biol. Sci. 283, 20161037 (2016).
Blagodatsky, S. A., Heinemeyer, O. & Richter, J. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biol. Fertil. Soils 32, 73–81 (2000).
Wang, G. S., Mayes, M. A., Gu, L. H. & Schadt, C. W. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE 9, e89252 (2014).
Zha, J. & Zhuang, Q. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).
Lennon, J. T. et al. Priorities, opportunities, and challenges for integrating microorganisms into Earth system models for climate change prediction. mBio 15, e0045524 (2024).
He, Y. et al. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests. J. Geophys. Res. Biogeosci. 120, 2596–2611 (2015).
Lyu, Z. et al. Seasonal dynamics of Arctic soils: capturing year-round processes in measurements and soil biogeochemical models. Earth Sci. Rev. 254, 104820 (2024).
Bradley, J. et al. Active and dormant microorganisms on glacier surfaces. Geobiology 21, 244–261 (2023).
Greening, C., Grinter, R. & Chiri, E. Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems 4, e00107–e00119 (2019).
Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl Acad. Sci. USA 111, 4257–4261 (2014).
Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020).
LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta 286, 227–247 (2020).
Bradley, J. A., Arndt, S., Amend, J. P., Burwicz-Galerne, E. & LaRowe, D. E. Sources and fluxes of organic carbon and energy to microorganisms in global marine sediments. Front. Microbiol. 13, 910694 (2022).
Bradley, J. A., Hülse, D., LaRowe, D. E. & Arndt, S. Transfer efficiency of organic carbon in marine sediments. Nat. Commun. 13, 7297 (2022).
Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).
Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 1382–1386 (1991).
Pirt, S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B Biol. Sci. 163, 224–231 (1965).
Westerhoff, H. V., Hellingwerf, K. J. & Van Dam, K. Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc. Natl Acad. Sci. USA 80, 305–309 (1983).
Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).
Morita, R. Y. Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman & Hall microbiology series. (Chapman & Hall, New York, ©1997).
Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).
LaRowe, D. E. & Amend, J. P. Power limits for microbial life. Front. Microbiol. 6, 1–11 (2015).
Marschall, E., Jogler, M., Henßge, U. & Overmann, J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ. Microbiol. 12, 1348–1362 (2010).
Bradley, J. A., Amend, J. P. & LaRowe, D. E. Survival of the fewest: microbial dormancy and maintenance in marine sediments through deep time. Geobiology 17, 43–59 (2019).
Jørgensen, B. B. Deep subseafloor microbial cells on physiological standby. Proc. Natl Acad. Sci. USA 108, 18193–18194 (2011).
Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2020).
Grossart, H. P., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, 2–20 (2020).
Shi, Y., Tyson, G. W., Eppley, J. M. & Delong, E. F. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 5, 999–1013 (2011).
Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0323-1 (2020).
Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 11, 1949 (2017).
Reed, D. C., Algar, C. K., Huber, J. A. & Dick, G. J. Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc. Natl Acad. Sci. USA 111, 1879–1884 (2014).