• Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    Article 
    ADS 

    Google Scholar
     

  • He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Herrmann, J. F. et al. Mirror symmetric on-chip frequency circulation of light. Nat. Photon. 16, 603–608 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36–40 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xue, S. et al. Full-spectrum visible electro-optic modulator. Optica 10, 125 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light Sci. Appl. 11, 327 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Finco, G. Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution. Nat. Commun. 15, 2330 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. et al. Mirror-induced reflection in the frequency domain. Nat. Commun. 13, 6293 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. et al. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica 7, 1189–1194 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Javid, U. A. et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photon. 17, 883–890 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Topologically tuned terahertz confinement in a nonlinear photonic chip. Light Sci. Appl. 11, 152 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gorbach, A. V., Beer, J. & Souslov, A. Topological edge states in equidistant arrays of lithium niobate nano-waveguides. Opt. Lett. 48, 1982–1985 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7, 1714–1720 (2020).

    Article 
    ADS 

    Google Scholar
     

  • McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737–1745 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yoo, S. J. B. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol. 14, 955–966 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Nakajima, K., Matsui, T., Saito, K., Sakamoto, T. & Araki, N. Multi-core fiber technology: next generation optical communication strategy. IEEE Commun. Stand. Mag. 1, 38–45 (2017).

    Article 

    Google Scholar
     

  • Kaushal, H. & Kaddoum, G. Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19, 57–96 (2017).

    Article 

    Google Scholar
     

  • Mukherjee, B. WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18, 1810–1824 (2000).

    Article 

    Google Scholar
     

  • Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603, 253–258 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003).

    Article 

    Google Scholar
     

  • Siddiqui, M. et al. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photon. 12, 111–116 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–18 (2020).

    Article 

    Google Scholar
     

  • Berggren, K. et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology 32, 012002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article 

    Google Scholar
     

  • Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Seeds, A. J. & Williams, K. J. Microwave photonics. J. Lightwave Technol. 24, 4628–4641 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Yao, J. Microwave photonics. J. Lightwave Technol. 27, 314–335 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Eggleton, B. J. et al. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Levy, M. et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73, 2293–2295 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Hu, H., Ricken, R. & Sohler, W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast. In Proc. Topical Meeting “Photorefractive Materials, Effects, and Devices – Control of Light and Matter” (Universität Paderborn, 2009).

  • Hu, H., Gui, L., Ricken, R. & Sohler, W. Towards nonlinear photonic wires in lithium niobate. In Proc. Integrated Optics: Devices, Materials, and Technologies XIV (eds Broquin, J.-E. & Greiner, C. M.) 183–194 (SPIE, 2010).

  • Ulliac, G., Calero, V., Ndao, A., Baida, F. I. & Bernal, M.-P. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater. 53, 1–5 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kaufmann, F., Finco, G., Maeder, A. & Grange, R. Redeposition-free inductively-coupled plasma etching of thin-film lithium niobate on insulator. In Proc. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2023).

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G. et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4, 034003 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wen, Y., Chen, H., Wu, Z., Li, W. & Zhang, Y. Fabrication and photonic applications of Si-integrated LiNbO3 and BaTiO3 ferroelectric thin films. APL Mater. 12, 020601 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ren, T. et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett. 31, 889–892 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Örsel, O. E. & Bahl, G. Electro-optic non-reciprocal polarization rotation in lithium niobate. APL Photonics 8, 096107 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vazimali, M. G. & Fathpour, S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics https://doi.org/10.1117/1.AP.4.3.034001 (2022).

  • Sinatkas, G., Christopoulos, T., Tsilipakos, O. & Kriezis, E. E. Electro-optic modulation in integrated photonics. J. Appl. Phys. 130, 010901 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G., Gao, Y., Lin, H.-L. & Danner, A. J. Compact and efficient thin‐film lithium niobate modulators. Adv. Photonics Res. https://doi.org/10.1002/adpr.202300229 (2023).

  • Boyd, R. W. Nonlinear Optics (Elsevier, 2008).

  • Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

  • Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).

  • Schollhammer, J., Baghban, M. A. & Gallo, K. Modal birefringence-free lithium niobate waveguides. Opt. Lett. 42, 3578 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cao, L., Aboketaf, A., Wang, Z. & Preble, S. Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator. Opt. Commun. 330, 40–44 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. et al. Amorphous silicon-lithium niobate thin film strip-loaded waveguides. Opt. Mater. Express 7, 4018–4028 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, H. et al. Hybrid mono-crystalline silicon and lithium niobate thin films [Invited]. Chin. Opt. Lett. 19, 060017 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, Q., Zhu, H., Zhang, H., Cai, L. & Hu, H. Phase modulators in hybrid silicon and lithium niobate thin films. Opt. Mater. Express 12, 1314 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jin, S., Xu, L., Zhang, H. & Li, Y. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett. 28, 736–739 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rao, A. et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41, 5700 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mehta, K. K., West, G. N. & Ram, R. J. SiN-on-LiNbO3 integrated optical modulation at visible wavelengths. In Proc. Conference on Lasers and Electro-Optics, paper STu3N.7 (Optica Publishing Group, 2017).

  • Rao, A. & Fathpour, S. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics. IEEE J. Sel. Top. Quantum Electron. 24, 1–12 (2018).


    Google Scholar
     

  • Ahmed, A. N. R., Shi, S., Zablocki, M., Yao, P. & Prather, D. W. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 44, 618–621 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rao, A. et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express 24, 29941 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chang, L. et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 42, 803 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vanackere, T. et al. Heterogeneous integration of a high-speed lithium niobate modulator on silicon nitride using micro-transfer printing. APL Photonics 8, 086102 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14, 3499 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, S. et al. Wafer-scale heterogeneous integration of thin film lithium niobate on silicon-nitride photonic integrated circuits with low loss bonding interfaces. Opt. Express 31, 12005 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sun, S. et al. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photonics Res. 8, 1958 (2020).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode. ACS Photonics 9, 2668–2675 (2022).

    Article 

    Google Scholar
     

  • Mookherjea, S., Mere, V. & Valdez, F. Thin-film lithium niobate electro-optic modulators: to etch or not to etch. Appl. Phys. Lett. 122, 120501 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Mercante, A. J. et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24, 15590 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 26, 14810 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G. et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics 7, 026103 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nelan, S. P. et al. Integrated lithium niobate intensity modulator on a silicon handle with slow-wave electrodes. IEEE Photonics Technol. Lett. 34, 981–984 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Valdez, F. et al. 110 GHz, 110 mW hybrid silicon–lithium niobate Mach–Zehnder modulator. Sci. Rep. 12, 18611 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Agrell, E. et al. Roadmap on optical communications. J. Opt. 26, 093001 (2024).

    Article 

    Google Scholar
     

  • Bankwitz, J. R. et al. Towards ‘smart transceivers’ in FPGA-controlled lithium-niobate-on-insulator integrated circuits for edge computing applications [Invited]. Opt. Mater. Express 13, 3667 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. et al. 800G DR8 transceiver based on thin-film lithium niobate photonic integrated circuits. In Proc. European Conference on Optical Communication (ECOC) 2022, paper Th2F.4 (Optica Publishing Group, 2022).

  • Xie, X. et al. Ultrahigh-speed thin-film lithium niobate optical coherent receiver. Preprint at https://doi.org/10.48550/arXiv.2408.02878 (2024).

  • Zhang, Y. et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate. Photonics Res. 10, 2380 (2022).

    Article 

    Google Scholar
     

  • Arab Juneghani, F. et al. Thin‐film lithium niobate optical modulators with an extrapolated bandwidth of 170 GHz. Adv. Photonics Res. 4, 2200216 (2023).

    Article 

    Google Scholar
     

  • Xu, M. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X. et al. Thin-film lithium niobate dual-polarization IQ modulator on a silicon substrate for single-carrier 1.6 Tb/s transmission. APL Photonics 7, 076101 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xu, M. et al. Attojoule/bit folded thin film lithium niobate coherent modulators using air-bridge structures. APL Photonics 8, 066104 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Broadband meandered thin-film lithium niobate modulator with ultra-low half-wave voltage. IEEE Photonics Technol. Lett. 34, 424–427 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366 (2022).

    Article 

    Google Scholar
     

  • Zhang, K. et al. A power-efficient integrated lithium niobate electro-optic comb generator. Commun. Phys. 6, 17 (2023).

    Article 

    Google Scholar
     

  • Pohl, D. et al. High-bandwidth lithium niobate electro-optic modulator at visible-near-infrared wavelengths. In Proc. European Conference on Optical Communication (ECOC) 2022, paper Tu4E.1 (Optica Publishing Group, 2022).

  • Sabatti, A. et al. Extremely high extinction ratio electro-optic modulator via frequency upconversion to visible wavelengths. Opt. Lett. 49, 3870 (2024).

    Article 

    Google Scholar
     

  • Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).

    Article 

    Google Scholar
     

  • Christen, I. et al. An integrated photonic engine for programmable atomic control. Nat. Commun. 16, 82 (2025).

    Article 

    Google Scholar
     

  • Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R. & Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon. 1, 407–410 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C., Zhang, M., Stern, B., Lipson, M. & Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bahadori, M., Yang, Y., Hassanien, A. E., Goddard, L. L. & Gong, S. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 28, 29644 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Witmer, J. D. et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci. Rep. 7, 46313 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, M. et al. Integrated lithium niobate modulator and frequency comb generator based on Fabry–Perot resonators. In Proc. Conference on Lasers and Electro-Optics, paper JTh2B.27 (Optica Publishing Group, 2020).

  • Pan, B. et al. Compact electro-optic modulator on lithium niobate. Photonics Res. 10, 697 (2022).

    Article 

    Google Scholar
     

  • Pohl, D. et al. 100-GBd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol. Lett. 33, 85–88 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xue, Y. et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 9, 1131 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xu, M. et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics 4, 100802 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jian, J. et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt. Express 27, 18731 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Huang, X. et al. 40 GHz high-efficiency Michelson interferometer modulator on a silicon-rich nitride and thin-film lithium niobate hybrid platform. Opt. Lett. 46, 2811 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Z. et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl. 11, 93 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Huang, X. et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform. IEEE Photonics Technol. Lett. 33, 1093–1096 (2021) .

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica 11, 1614–1620 (2024).

    Article 

    Google Scholar
     

  • Powell, K. et al. DC-stable electro-optic modulators using thin-film lithium tantalate. Opt. Express 32, 44115 (2024).

    Article 

    Google Scholar
     

  • Wang, H. et al. Optical switch with an ultralow DC drift based on thin-film lithium tantalate. Opt. Lett. 49, 5019 (2024).

    Article 

    Google Scholar
     

  • Parriaux, A., Hammani, K. & Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 12, 223 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Beha, K. et al. Electronic synthesis of light. Optica 4, 406 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, M., He, M., Zhu, Y., Yu, S. & Cai, X. Flat optical frequency comb generator based on integrated lithium niobate modulators. J. Lightwave Technol. 40, 339–345 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, R. et al. Single-drive electro-optic frequency comb source on a photonic-wire-bonded thin-film lithium niobate platform. Opt. Lett. 49, 3504 (2024).

    Article 

    Google Scholar
     

  • Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, L. M. & Cox, C. H. Serrodyne optical frequency translation with high sideband suppression. J. Lightwave Technol. 6, 109–112 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Wright, L. J., Karpiński, M., Söller, C. & Smith, B. J. Spectral shearing of quantum light pulses by electro-optic phase modulation. Phys. Rev. Lett. 118, 023601 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Grimau Puigibert, M. et al. Heralded single photons based on spectral multiplexing and feed-forward control. Phys. Rev. Lett. 119, 083601 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, L., Lin, Q., Xiao, M. & Fan, S. Synthetic dimension in photonics. Optica 5, 1396 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wu, S. et al. Approaching the adiabatic infimum of topological pumps on thin-film lithium niobate waveguides. Nat. Commun. 15, 9805 (2024).

    Article 

    Google Scholar
     

  • Hou, J. et al. Enhanced frequency conversion in parity-time symmetry line. Phys. Rev. Lett. 132, 256902 (2024).

    Article 

    Google Scholar
     

  • Wu, S. et al. Broadband asymmetric light transport in compact lithium niobate waveguides. Laser Photon. Rev. 17, 2300306 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Z. et al. Ultrabroadband low-crosstalk dense lithium niobate waveguides by Floquet engineering. Phys. Rev. Appl. 20, 054005 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 |(2009).

    Article 
    ADS 

    Google Scholar
     

  • Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article 

    Google Scholar
     

  • Yuan, L., Xiao, M., Lin, Q. & Fan, S. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yu, D. et al. Moiré lattice in one-dimensional synthetic frequency dimension. Phys. Rev. Lett. 130, 143801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, D., Lustig, E., Wang, K. & Fan, S. Multi-dimensional band structure spectroscopy in the synthetic frequency dimension. Light Sci. Appl. 12, 158 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yu, D. et al. Simulating graphene dynamics in synthetic space with photonic rings. Commun. Phys. 4, 219 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Warner, H. K. et al. Coherent control of a superconducting qubit using light. Nat. Phys. https://doi.org/10.1038/s41567-025-02812-0 (2025).

  • Shen, M. et al. Photonic link from single-flux-quantum circuits to room temperature. Nat. Photon. 18, 371–378 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Light-induced dynamic frequency shifting of microwave photons in a superconducting electro-optic converter. Phys. Rev. Appl. 18, 064045 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Krastanov, S. et al. Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lukens, J. M. et al. All-optical frequency processor for networking applications. J. Lightwave Technol. 38, 1678–1687 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Supradeepa, V. R. et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, X. et al. Hypercubic cluster states in the phase-modulated quantum optical frequency comb. Optica 8, 281 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lu, H.-H. et al. Quantum interference and correlation control of frequency-bin qubits. Optica 5, 1455 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron. 4, 326–332 (2021).

    Article 

    Google Scholar
     

  • Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tsang, M. Cavity quantum electro-optics. II. Input–output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Javerzac-Galy, C. et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons — an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).

    Article 

    Google Scholar
     

  • Liang, Y. et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics 11, 1033–1040 (2022).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Laser diode-pumped compact hybrid lithium niobate microring laser. Opt. Lett. 47, 5599 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Han, Y. et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III–V laser. Opt. Lett. 46, 5413 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, M. et al. Integrated Pockels laser. Nat. Commun. 13, 5344 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shams-Ansari, A. Thin-film lithium niobate laser integration. In Proc. Frontiers in Optics + Laser Science 2022 (FIO, LS), paper LM1F.4 (Optica Publishing Group, 2022).

  • Lufungula, I. L. et al. On-chip electro-optic frequency comb generation using a heterogeneously integrated laser. In Proc. Conference on Lasers and Electro-Optics, paper JTh6B.7 (Optica Publishing Group, 2022).

  • Op De Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. Heterogeneously integrated III–V-on-lithium niobate broadband light sources and photodetectors. Opt. Lett. 47, 4564 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett. 122, 081103 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shams-Ansari, A. et al. Scalable laser integration on thin-film lithium niobate platform. In Proc. Conference on Lasers and Electro-Optics, paper STh4O.2 (Optica Publishing Group, 2023).

  • Guo, X. et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res. 10, 1338 (2022).

    Article 

    Google Scholar
     

  • Wei, C. et al. Ultra-wideband waveguide-coupled photodiodes heterogeneously integrated on a thin-film lithium niobate platform. Light Adv. Manuf. 4, 1 (2023).

    Article 

    Google Scholar
     

  • Luo, Q., Bo, F., Kong, Y., Zhang, G. & Xu, J. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photonics 5, 034002 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, eadf8437 (2023).

    Article 

    Google Scholar
     

  • Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).

    Article 
    ADS 

    Google Scholar
     

  • He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gong, Z., Liu, X., Xu, Y. & Tang, H. X. Near-octave lithium niobate soliton microcomb. Optica 7, 1275 (2020).

    Article 
    ADS 

    Google Scholar
     

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article 

    Google Scholar
     

  • Moody, G. et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photonics 4, 012501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lu, H.-H., Simmerman, E. M., Lougovski, P., Weiner, A. M. & Lukens, J. M. Fully arbitrary control of frequency-bin qubits. Phys. Rev. Lett. 125, 120503 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pfister, O. Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B 53, 012001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lu, H.-H., Lingaraju, N. B., Leaird, D. E., Weiner, A. M. & Lukens, J. M. High-dimensional discrete Fourier transform gates with a quantum frequency processor. Opt. Express 30, 10126 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lu, H.-H. et al. Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements. Nat. Commun. 13, 4338 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Seshadri, S., Lu, H.-H., Leaird, D. E., Weiner, A. M. & Lukens, J. M. Complete frequency-bin Bell basis synthesizer. Phys. Rev. Lett. 129, 230505 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yeh, M. et al. Single-photon frequency shifting using coupled microring resonators on thin-film lithium niobate. In Proc. Conference on Lasers and Electro-Optics, paper FTh5C.4 (Optica Publishing Group, 2022).

  • Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Nunn, J. et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 110, 133601 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Xu, B.-Y. et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron. 65, 294262 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wolf, R. et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X. et al. Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips. npj Quantum Inf. 9, 38 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Roussev, R. V., Langrock, C., Kurz, J. R. & Fejer, M. M. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photonics 3, 042005 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cui, C., Zhang, L. & Fan, L. In situ control of effective Kerr nonlinearity with Pockels integrated photonics. Nat. Phys. 18, 497–501 (2022).

    Article 

    Google Scholar
     

  • Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).

    Article 

    Google Scholar
     

  • Wang, S. et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett. 116, 151103 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Saglamyurek, E. et al. An integrated processor for photonic quantum states using a broadband light–matter interface. N. J. Phys. 16, 065019 (2014).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tang, S.-J. et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nat. Photon. 17, 951–956 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Stokowski, H. S. et al. Integrated frequency-modulated optical parametric oscillator. Nature 627, 95–100 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Englebert, N. et al. Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nat. Phys. 19, 1014–1021 (2023).

    Article 

    Google Scholar
     

  • Hwang, A. Y. et al. Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator. Optica 10, 1535 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lei, F. et al. Self-injection-locked microcomb-based coherent oscillator. Optica 11, 420–426 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Niu, R. et al. An integrated wavemeter based on fully-stabilized resonant electro-optic frequency comb. Commun. Phys. 6, 329 (2023).

    Article 

    Google Scholar
     

  • Niu, R. et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun. 14, 169 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article 
    ADS 

    Google Scholar
     

  • He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun. 14, 3467 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, R. et al. Frequency comb generation via synchronous pumped χ (3) resonator on thin-film lithium niobate. Nat. Commun. 15, 3921 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, J. et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photon. Rev. 15, 2100030 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett. 46, 1161 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Luo, Q. et al. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett. 46, 3275 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gaafar, M. A. et al. Femtosecond pulse amplification on a chip. Nat. Commun. 15, 8109 (2024).

    Article 

    Google Scholar
     

  • Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article 

    Google Scholar
     

  • Yue, G. & Li, Y. Integrated lithium niobate optical phased array for two-dimensional beam steering. Opt. Lett. 48, 3633 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Li, W. et al. High-speed 2D beam steering based on a thin-film lithium niobate optical phased array with a large field of view. Photonics Res. 11, 1912 (2023).

    Article 

    Google Scholar
     

  • Liang, H., Luo, R., He, Y., Jiang, H. & Lin, Q. High-quality lithium niobate photonic crystal nanocavities. Optica 4, 1251–1258 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, H. et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett. 113, 021104 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845–853 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mrozowski, M. P., Jeffers, J. & Pritchard, J. D. High-efficiency coupled-cavity optical frequency comb generation. Opt. Contin. 2, 894–901 (2023).

    Article 

    Google Scholar