Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).
He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).
Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61 (2022).
Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2020).
Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).
Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).
Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).
Herrmann, J. F. et al. Mirror symmetric on-chip frequency circulation of light. Nat. Photon. 16, 603–608 (2022).
Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36–40 (2019).
Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).
Xue, S. et al. Full-spectrum visible electro-optic modulator. Optica 10, 125 (2023).
Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light Sci. Appl. 11, 327 (2022).
Finco, G. Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution. Nat. Commun. 15, 2330 (2024).
Hu, Y. et al. Mirror-induced reflection in the frequency domain. Nat. Commun. 13, 6293 (2022).
Hu, Y. et al. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica 7, 1189–1194 (2020).
Javid, U. A. et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photon. 17, 883–890 (2023).
Wang, J. et al. Topologically tuned terahertz confinement in a nonlinear photonic chip. Light Sci. Appl. 11, 152 (2022).
Gorbach, A. V., Beer, J. & Souslov, A. Topological edge states in equidistant arrays of lithium niobate nano-waveguides. Opt. Lett. 48, 1982–1985 (2023).
Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7, 1714–1720 (2020).
McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737–1745 (2020).
Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).
Yoo, S. J. B. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol. 14, 955–966 (1996).
Nakajima, K., Matsui, T., Saito, K., Sakamoto, T. & Araki, N. Multi-core fiber technology: next generation optical communication strategy. IEEE Commun. Stand. Mag. 1, 38–45 (2017).
Kaushal, H. & Kaddoum, G. Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
Mukherjee, B. WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18, 1810–1824 (2000).
Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2016).
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).
Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603, 253–258 (2022).
Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003).
Siddiqui, M. et al. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photon. 12, 111–116 (2018).
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–18 (2020).
Berggren, K. et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology 32, 012002 (2021).
McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).
Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).
Seeds, A. J. & Williams, K. J. Microwave photonics. J. Lightwave Technol. 24, 4628–4641 (2006).
Yao, J. Microwave photonics. J. Lightwave Technol. 27, 314–335 (2009).
Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).
Eggleton, B. J. et al. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).
Levy, M. et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73, 2293–2295 (1998).
Hu, H., Ricken, R. & Sohler, W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast. In Proc. Topical Meeting “Photorefractive Materials, Effects, and Devices – Control of Light and Matter” (Universität Paderborn, 2009).
Hu, H., Gui, L., Ricken, R. & Sohler, W. Towards nonlinear photonic wires in lithium niobate. In Proc. Integrated Optics: Devices, Materials, and Technologies XIV (eds Broquin, J.-E. & Greiner, C. M.) 183–194 (SPIE, 2010).
Ulliac, G., Calero, V., Ndao, A., Baida, F. I. & Bernal, M.-P. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater. 53, 1–5 (2016).
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536 (2017).
Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).
Kaufmann, F., Finco, G., Maeder, A. & Grange, R. Redeposition-free inductively-coupled plasma etching of thin-film lithium niobate on insulator. In Proc. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2023).
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242 (2021).
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
Chen, G. et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4, 034003 (2022).
Wen, Y., Chen, H., Wu, Z., Li, W. & Zhang, Y. Fabrication and photonic applications of Si-integrated LiNbO3 and BaTiO3 ferroelectric thin films. APL Mater. 12, 020601 (2024).
Ren, T. et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett. 31, 889–892 (2019).
Örsel, O. E. & Bahl, G. Electro-optic non-reciprocal polarization rotation in lithium niobate. APL Photonics 8, 096107 (2023).
Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).
Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).
Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357 (2021).
Vazimali, M. G. & Fathpour, S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics https://doi.org/10.1117/1.AP.4.3.034001 (2022).
Sinatkas, G., Christopoulos, T., Tsilipakos, O. & Kriezis, E. E. Electro-optic modulation in integrated photonics. J. Appl. Phys. 130, 010901 (2021).
Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652 (2021).
Chen, G., Gao, Y., Lin, H.-L. & Danner, A. J. Compact and efficient thin‐film lithium niobate modulators. Adv. Photonics Res. https://doi.org/10.1002/adpr.202300229 (2023).
Boyd, R. W. Nonlinear Optics (Elsevier, 2008).
Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).
Schollhammer, J., Baghban, M. A. & Gallo, K. Modal birefringence-free lithium niobate waveguides. Opt. Lett. 42, 3578 (2017).
Cao, L., Aboketaf, A., Wang, Z. & Preble, S. Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator. Opt. Commun. 330, 40–44 (2014).
Wang, Y. et al. Amorphous silicon-lithium niobate thin film strip-loaded waveguides. Opt. Mater. Express 7, 4018–4028 (2017).
Zhu, H. et al. Hybrid mono-crystalline silicon and lithium niobate thin films [Invited]. Chin. Opt. Lett. 19, 060017 (2021).
Li, Q., Zhu, H., Zhang, H., Cai, L. & Hu, H. Phase modulators in hybrid silicon and lithium niobate thin films. Opt. Mater. Express 12, 1314 (2022).
Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531 (2016).
Jin, S., Xu, L., Zhang, H. & Li, Y. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett. 28, 736–739 (2016).
Rao, A. et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41, 5700 (2016).
Mehta, K. K., West, G. N. & Ram, R. J. SiN-on-LiNbO3 integrated optical modulation at visible wavelengths. In Proc. Conference on Lasers and Electro-Optics, paper STu3N.7 (Optica Publishing Group, 2017).
Rao, A. & Fathpour, S. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics. IEEE J. Sel. Top. Quantum Electron. 24, 1–12 (2018).
Ahmed, A. N. R., Shi, S., Zablocki, M., Yao, P. & Prather, D. W. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 44, 618–621 (2019).
Rao, A. et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express 24, 29941 (2016).
Chang, L. et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 42, 803 (2017).
Vanackere, T. et al. Heterogeneous integration of a high-speed lithium niobate modulator on silicon nitride using micro-transfer printing. APL Photonics 8, 086102 (2023).
Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14, 3499 (2023).
Ghosh, S. et al. Wafer-scale heterogeneous integration of thin film lithium niobate on silicon-nitride photonic integrated circuits with low loss bonding interfaces. Opt. Express 31, 12005 (2023).
Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018).
Sun, S. et al. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photonics Res. 8, 1958 (2020).
Wang, Z. et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode. ACS Photonics 9, 2668–2675 (2022).
Mookherjea, S., Mere, V. & Valdez, F. Thin-film lithium niobate electro-optic modulators: to etch or not to etch. Appl. Phys. Lett. 122, 120501 (2023).
Mercante, A. J. et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24, 15590 (2016).
Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 26, 14810 (2018).
Chen, G. et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics 7, 026103 (2022).
Nelan, S. P. et al. Integrated lithium niobate intensity modulator on a silicon handle with slow-wave electrodes. IEEE Photonics Technol. Lett. 34, 981–984 (2022).
Valdez, F. et al. 110 GHz, 110 mW hybrid silicon–lithium niobate Mach–Zehnder modulator. Sci. Rep. 12, 18611 (2022).
Agrell, E. et al. Roadmap on optical communications. J. Opt. 26, 093001 (2024).
Bankwitz, J. R. et al. Towards ‘smart transceivers’ in FPGA-controlled lithium-niobate-on-insulator integrated circuits for edge computing applications [Invited]. Opt. Mater. Express 13, 3667 (2023).
Li, H. et al. 800G DR8 transceiver based on thin-film lithium niobate photonic integrated circuits. In Proc. European Conference on Optical Communication (ECOC) 2022, paper Th2F.4 (Optica Publishing Group, 2022).
Xie, X. et al. Ultrahigh-speed thin-film lithium niobate optical coherent receiver. Preprint at https://doi.org/10.48550/arXiv.2408.02878 (2024).
Zhang, Y. et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate. Photonics Res. 10, 2380 (2022).
Arab Juneghani, F. et al. Thin‐film lithium niobate optical modulators with an extrapolated bandwidth of 170 GHz. Adv. Photonics Res. 4, 2200216 (2023).
Xu, M. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).
Wang, X. et al. Thin-film lithium niobate dual-polarization IQ modulator on a silicon substrate for single-carrier 1.6 Tb/s transmission. APL Photonics 7, 076101 (2022).
Xu, M. et al. Attojoule/bit folded thin film lithium niobate coherent modulators using air-bridge structures. APL Photonics 8, 066104 (2023).
Liu, X. et al. Broadband meandered thin-film lithium niobate modulator with ultra-low half-wave voltage. IEEE Photonics Technol. Lett. 34, 424–427 (2022).
Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366 (2022).
Zhang, K. et al. A power-efficient integrated lithium niobate electro-optic comb generator. Commun. Phys. 6, 17 (2023).
Pohl, D. et al. High-bandwidth lithium niobate electro-optic modulator at visible-near-infrared wavelengths. In Proc. European Conference on Optical Communication (ECOC) 2022, paper Tu4E.1 (Optica Publishing Group, 2022).
Sabatti, A. et al. Extremely high extinction ratio electro-optic modulator via frequency upconversion to visible wavelengths. Opt. Lett. 49, 3870 (2024).
Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).
Christen, I. et al. An integrated photonic engine for programmable atomic control. Nat. Commun. 16, 82 (2025).
Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R. & Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon. 1, 407–410 (2007).
Wang, C., Zhang, M., Stern, B., Lipson, M. & Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547 (2018).
Bahadori, M., Yang, Y., Hassanien, A. E., Goddard, L. L. & Gong, S. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 28, 29644 (2020).
Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).
Witmer, J. D. et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci. Rep. 7, 46313 (2017).
Xu, M. et al. Integrated lithium niobate modulator and frequency comb generator based on Fabry–Perot resonators. In Proc. Conference on Lasers and Electro-Optics, paper JTh2B.27 (Optica Publishing Group, 2020).
Pan, B. et al. Compact electro-optic modulator on lithium niobate. Photonics Res. 10, 697 (2022).
Pohl, D. et al. 100-GBd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol. Lett. 33, 85–88 (2021).
Xue, Y. et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 9, 1131 (2022).
Xu, M. et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics 4, 100802 (2019).
Jian, J. et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt. Express 27, 18731 (2019).
Huang, X. et al. 40 GHz high-efficiency Michelson interferometer modulator on a silicon-rich nitride and thin-film lithium niobate hybrid platform. Opt. Lett. 46, 2811 (2021).
Lin, Z. et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl. 11, 93 (2022).
Huang, X. et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform. IEEE Photonics Technol. Lett. 33, 1093–1096 (2021) .
Wang, C. et al. Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica 11, 1614–1620 (2024).
Powell, K. et al. DC-stable electro-optic modulators using thin-film lithium tantalate. Opt. Express 32, 44115 (2024).
Wang, H. et al. Optical switch with an ultralow DC drift based on thin-film lithium tantalate. Opt. Lett. 49, 5019 (2024).
Parriaux, A., Hammani, K. & Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 12, 223 (2020).
Beha, K. et al. Electronic synthesis of light. Optica 4, 406 (2017).
Xu, M., He, M., Zhu, Y., Yu, S. & Cai, X. Flat optical frequency comb generator based on integrated lithium niobate modulators. J. Lightwave Technol. 40, 339–345 (2022).
Cheng, R. et al. Single-drive electro-optic frequency comb source on a photonic-wire-bonded thin-film lithium niobate platform. Opt. Lett. 49, 3504 (2024).
Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).
Johnson, L. M. & Cox, C. H. Serrodyne optical frequency translation with high sideband suppression. J. Lightwave Technol. 6, 109–112 (1988).
Wright, L. J., Karpiński, M., Söller, C. & Smith, B. J. Spectral shearing of quantum light pulses by electro-optic phase modulation. Phys. Rev. Lett. 118, 023601 (2017).
Grimau Puigibert, M. et al. Heralded single photons based on spectral multiplexing and feed-forward control. Phys. Rev. Lett. 119, 083601 (2017).
Yuan, L., Lin, Q., Xiao, M. & Fan, S. Synthetic dimension in photonics. Optica 5, 1396 (2018).
Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).
Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Wu, S. et al. Approaching the adiabatic infimum of topological pumps on thin-film lithium niobate waveguides. Nat. Commun. 15, 9805 (2024).
Hou, J. et al. Enhanced frequency conversion in parity-time symmetry line. Phys. Rev. Lett. 132, 256902 (2024).
Wu, S. et al. Broadband asymmetric light transport in compact lithium niobate waveguides. Laser Photon. Rev. 17, 2300306 (2023).
Lin, Z. et al. Ultrabroadband low-crosstalk dense lithium niobate waveguides by Floquet engineering. Phys. Rev. Appl. 20, 054005 (2023).
Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).
Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 |(2009).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Yuan, L., Xiao, M., Lin, Q. & Fan, S. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018).
Yu, D. et al. Moiré lattice in one-dimensional synthetic frequency dimension. Phys. Rev. Lett. 130, 143801 (2023).
Cheng, D., Lustig, E., Wang, K. & Fan, S. Multi-dimensional band structure spectroscopy in the synthetic frequency dimension. Light Sci. Appl. 12, 158 (2023).
Yu, D. et al. Simulating graphene dynamics in synthetic space with photonic rings. Commun. Phys. 4, 219 (2021).
Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).
Warner, H. K. et al. Coherent control of a superconducting qubit using light. Nat. Phys. https://doi.org/10.1038/s41567-025-02812-0 (2025).
Shen, M. et al. Photonic link from single-flux-quantum circuits to room temperature. Nat. Photon. 18, 371–378 (2024).
Xu, Y. et al. Light-induced dynamic frequency shifting of microwave photons in a superconducting electro-optic converter. Phys. Rev. Appl. 18, 064045 (2022).
Krastanov, S. et al. Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).
Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).
Lukens, J. M. et al. All-optical frequency processor for networking applications. J. Lightwave Technol. 38, 1678–1687 (2020).
Supradeepa, V. R. et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012).
Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).
Zhu, X. et al. Hypercubic cluster states in the phase-modulated quantum optical frequency comb. Optica 8, 281 (2021).
Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8 (2017).
Lu, H.-H. et al. Quantum interference and correlation control of frequency-bin qubits. Optica 5, 1455 (2018).
Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).
Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).
Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron. 4, 326–332 (2021).
Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).
Tsang, M. Cavity quantum electro-optics. II. Input–output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011).
Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597 (2016).
Javerzac-Galy, C. et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016).
Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons — an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).
Liang, Y. et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics 11, 1033–1040 (2022).
Zhou, J. et al. Laser diode-pumped compact hybrid lithium niobate microring laser. Opt. Lett. 47, 5599 (2022).
Han, Y. et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III–V laser. Opt. Lett. 46, 5413 (2021).
Li, M. et al. Integrated Pockels laser. Nat. Commun. 13, 5344 (2022).
Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).
Shams-Ansari, A. Thin-film lithium niobate laser integration. In Proc. Frontiers in Optics + Laser Science 2022 (FIO, LS), paper LM1F.4 (Optica Publishing Group, 2022).
Lufungula, I. L. et al. On-chip electro-optic frequency comb generation using a heterogeneously integrated laser. In Proc. Conference on Lasers and Electro-Optics, paper JTh6B.7 (Optica Publishing Group, 2022).
Op De Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288 (2021).
Zhang, X. et al. Heterogeneously integrated III–V-on-lithium niobate broadband light sources and photodetectors. Opt. Lett. 47, 4564 (2022).
Zhang, X. et al. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett. 122, 081103 (2023).
Shams-Ansari, A. et al. Scalable laser integration on thin-film lithium niobate platform. In Proc. Conference on Lasers and Electro-Optics, paper STh4O.2 (Optica Publishing Group, 2023).
Guo, X. et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res. 10, 1338 (2022).
Wei, C. et al. Ultra-wideband waveguide-coupled photodiodes heterogeneously integrated on a thin-film lithium niobate platform. Light Adv. Manuf. 4, 1 (2023).
Luo, Q., Bo, F., Kong, Y., Zhang, G. & Xu, J. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photonics 5, 034002 (2023).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).
Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).
Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).
Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).
Chen, Y. et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, eadf8437 (2023).
Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).
He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138 (2019).
Gong, Z., Liu, X., Xu, Y. & Tang, H. X. Near-octave lithium niobate soliton microcomb. Optica 7, 1275 (2020).
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).
Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).
Moody, G. et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photonics 4, 012501 (2022).
Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654 (2020).
Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).
Lu, H.-H., Simmerman, E. M., Lougovski, P., Weiner, A. M. & Lukens, J. M. Fully arbitrary control of frequency-bin qubits. Phys. Rev. Lett. 125, 120503 (2020).
Pfister, O. Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B 53, 012001 (2020).
Lu, H.-H., Lingaraju, N. B., Leaird, D. E., Weiner, A. M. & Lukens, J. M. High-dimensional discrete Fourier transform gates with a quantum frequency processor. Opt. Express 30, 10126 (2022).
Lu, H.-H. et al. Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements. Nat. Commun. 13, 4338 (2022).
Seshadri, S., Lu, H.-H., Leaird, D. E., Weiner, A. M. & Lukens, J. M. Complete frequency-bin Bell basis synthesizer. Phys. Rev. Lett. 129, 230505 (2022).
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).
Yeh, M. et al. Single-photon frequency shifting using coupled microring resonators on thin-film lithium niobate. In Proc. Conference on Lasers and Electro-Optics, paper FTh5C.4 (Optica Publishing Group, 2022).
Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).
Nunn, J. et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 110, 133601 (2013).
Xu, B.-Y. et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron. 65, 294262 (2022).
Wolf, R. et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872 (2018).
Wang, X. et al. Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips. npj Quantum Inf. 9, 38 (2023).
Roussev, R. V., Langrock, C., Kurz, J. R. & Fejer, M. M. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518 (2004).
Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photonics 3, 042005 (2021).
Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303 (2022).
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).
Cui, C., Zhang, L. & Fan, L. In situ control of effective Kerr nonlinearity with Pockels integrated photonics. Nat. Phys. 18, 497–501 (2022).
Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).
Wang, S. et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett. 116, 151103 (2020).
Saglamyurek, E. et al. An integrated processor for photonic quantum states using a broadband light–matter interface. N. J. Phys. 16, 065019 (2014).
Zhang, X. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).
Tang, S.-J. et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nat. Photon. 17, 951–956 (2023).
Stokowski, H. S. et al. Integrated frequency-modulated optical parametric oscillator. Nature 627, 95–100 (2024).
Englebert, N. et al. Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nat. Phys. 19, 1014–1021 (2023).
Hwang, A. Y. et al. Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator. Optica 10, 1535 (2023).
Lei, F. et al. Self-injection-locked microcomb-based coherent oscillator. Optica 11, 420–426 (2024).
Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).
Niu, R. et al. An integrated wavemeter based on fully-stabilized resonant electro-optic frequency comb. Commun. Phys. 6, 329 (2023).
Niu, R. et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun. 14, 169 (2023).
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).
Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).
Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).
He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun. 14, 3467 (2023).
Cheng, R. et al. Frequency comb generation via synchronous pumped χ (3) resonator on thin-film lithium niobate. Nat. Commun. 15, 3921 (2024).
Zhou, J. et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photon. Rev. 15, 2100030 (2021).
Chen, Z. et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett. 46, 1161 (2021).
Luo, Q. et al. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett. 46, 3275 (2021).
Gaafar, M. A. et al. Femtosecond pulse amplification on a chip. Nat. Commun. 15, 8109 (2024).
Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).
Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).
Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).
Yue, G. & Li, Y. Integrated lithium niobate optical phased array for two-dimensional beam steering. Opt. Lett. 48, 3633 (2023).
Li, W. et al. High-speed 2D beam steering based on a thin-film lithium niobate optical phased array with a large field of view. Photonics Res. 11, 1912 (2023).
Liang, H., Luo, R., He, Y., Jiang, H. & Lin, Q. High-quality lithium niobate photonic crystal nanocavities. Optica 4, 1251–1258 (2017).
Jiang, H. et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett. 113, 021104 (2018).
Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845–853 (2019).
Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).
Mrozowski, M. P., Jeffers, J. & Pritchard, J. D. High-efficiency coupled-cavity optical frequency comb generation. Opt. Contin. 2, 894–901 (2023).