• Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Huang, P.-J., Taniguchi, K. & Miyasaka, H. Bulk photovoltaic effect in a pair of chiral–polar layered perovskite-type lead iodides altered by chirality of organic cations. J. Am. Chem. Soc. 141, 14520–14523 (2019).

    Article 

    Google Scholar
     

  • Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liao, W.-Q. et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 6, 7338 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shu, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Flexophotovoltaic effect and above-band-gap photovoltage induced by strain gradients in halide perovskites. Phys. Rev. Lett. 132, 086902 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ye, H.-Y., Zhang, Y., Fu, D.-W. & Xiong, R.-G. An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl3). Angew. Chem. Int. Ed. Engl. 53, 11242–11247 (2014).

    Article 

    Google Scholar
     

  • Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. et al. Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photon. 16, 529–537 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, F., Takenaka, H., Wang, F., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 6, 31–37 (2015).

    Article 

    Google Scholar
     

  • Sturman, B. I. Ballistic and shift currents in the bulk photovoltaic effect theory. Phys. Uspekhi 63, 407 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ellis, S. G. et al. Photovoltages larger than the band gap in zinc sulfide crystals. Phys. Rev. 109, 1860–1860 (1958).

    Article 
    ADS 

    Google Scholar
     

  • Glass, A. M., von der Linde, D. & Negran, T. J. High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Goldstein, L. & Pensak, L. High-voltage photovoltaic effect. J. Appl. Phys. 30, 155–161 (1959).

    Article 
    ADS 

    Google Scholar
     

  • Koch, W. T. H., Munser, R., Ruppel, W. & Würfel, P. Anomalous photovoltage in BaTiO3. Ferroelectrics 13, 305–307 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Asnin, V. M. et al. ‘Circular’ photogalvanic effect in optically active crystals. Solid State Commun. 30, 565–570 (1979).

    Article 
    ADS 

    Google Scholar
     

  • de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Olbrich, P. et al. Room-temperature high-frequency transport of Dirac fermions in epitaxially grown Sb2Te3- and Bi2Te3-based topological insulators. Phys. Rev. Lett. 113, 096601 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Q. S., Zhang, S. N., Fang, Z. & Dai, X. Photogalvanic in ultrathin film of topological insulator. Phys. E Low Dimens. Syst. Nanostruct. 44, 895–899 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gao, J.-X., Zhang, W.-Y., Wu, Z.-G., Zheng, Y.-X. & Fu, D.-W. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J. Am. Chem. Soc. 142, 4756–4761 (2020).

    Article 

    Google Scholar
     

  • Jia, R. et al. Composition gradient-enabled circular photogalvanic effect in inorganic halide perovskites. Appl. Phys. Lett. 120, 211901 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells. Nat. Commun. 11, 323 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Ferroic halide perovskite optoelectronics. Adv. Funct. Mater. 31, 2102793 (2021).

    Article 

    Google Scholar
     

  • Sun, Z. et al. A photoferroelectric perovskite-type organometallic halide with exceptional anisotropy of bulk photovoltaic effects. Angew. Chem. Int. Ed. Engl. 55, 6545–6550 (2016).

    Article 

    Google Scholar
     

  • Sturman, B. & Fridkin, V. Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials 1st edn (Routledge, 1992).

  • Nagaosa, N. & Morimoto, T. Concept of quantum geometry in optoelectronic processes in solids: application to solar cells. Adv. Mater. 29, 1603345 (2017).

    Article 

    Google Scholar
     

  • Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar materials — hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cook, A. M., Fregoso, B. M., de Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Burger, A. M. et al. Direct observation of shift and ballistic photovoltaic currents. Sci. Adv. 5, eaau5588 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fregoso, B. M., Morimoto, T. & Moore, J. E. Quantitative relationship between polarization differences and the zone-averaged shift photocurrent. Phys. Rev. B 96, 075421 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Resta, R. Modern theory of polarization in ferroelectrics. Ferroelectrics 151, 49–58 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, J. et al. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16, 894–901 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ganichev, S. D. & Prettl, W. Intense Terahertz Excitation Semiconductors (Clarendon Press, 2005).

  • Bernevig, B. A., Orenstein, J. & Zhang, S.-C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Rashba, E. I. & Sheka, V. I. Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin–orbit interaction included. New J. Phys. 17, 050202 (2015).


    Google Scholar
     

  • Ding, K. et al. Superior ferroelectricity and nonlinear optical response in a hybrid germanium iodide hexagonal perovskite. Nat. Commun. 14, 2863 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ding, R. et al. Effective piezo-phototronic enhancement of flexible photodetectors based on 2D hybrid perovskite ferroelectric single-crystalline thin-films. Adv. Mater. 33, 2101263 (2021).

    Article 

    Google Scholar
     

  • Ji, C. et al. Bandgap narrowing of lead-free perovskite-type hybrids for visible-light-absorbing ferroelectric semiconductors. J. Phys. Chem. Lett. 8, 2012–2018 (2017).

    Article 

    Google Scholar
     

  • Pan, Q. et al. A three-dimensional molecular perovskite ferroelectric: (3-ammoniopyrrolidinium)RbBr3. J. Am. Chem. Soc. 139, 3954–3957 (2017).

    Article 

    Google Scholar
     

  • Park, I.-H. et al. Self-powered photodetector using two-dimensional ferroelectric Dion–Jacobson hybrid perovskites. J. Am. Chem. Soc. 142, 18592–18598 (2020).

    Article 

    Google Scholar
     

  • Sha, T.-T. et al. Fluorinated 2D lead iodide perovskite ferroelectrics. Adv. Mater. 31, 1901843 (2019).

    Article 

    Google Scholar
     

  • Stroppa, A. et al. Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites. Nat. Commun. 5, 5900 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Two-dimensional (n = 1) ferroelectric film solar cells. Natl Sci. Rev. 10, nwad061 (2023).

    Article 

    Google Scholar
     

  • Wei, W. et al. The first 2D organic–inorganic hybrid relaxor-ferroelectric single crystal. Sci. China Chem. 66, 466–474 (2023).

    Article 

    Google Scholar
     

  • Zheng, W. et al. Emerging halide perovskite ferroelectrics. Adv. Mater. 35, 2205410 (2023).

    Article 

    Google Scholar
     

  • Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Iwasaki, H., Miyazawa, S., Koizumi, H., Sugii, K. & Niizeki, N. Ferroelectric and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys. 43, 4907–4915 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Aglagul, D. & Shi, J. Strain-induced Kramers–Weyl phase in III–V zinc blende systems. Appl. Phys. Lett. 126, 083102 (2025).

    Article 

    Google Scholar
     

  • Hu, Y. et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 6, eaay4213 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Niesner, D. et al. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. Proc. Natl Acad. Sci. USA 115, 9509–9514 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ai, Y., Lv, H.-P., Wang, Z.-X., Liao, W.-Q. & Xiong, R.-G. H/F substitution for advanced molecular ferroelectrics. Trends Chem. 3, 1088–1099 (2021).

    Article 

    Google Scholar
     

  • Cai, Y., Chippindale, A. M., Curry, R. J. & Vaqueiro, P. Multiple roles of 1,4-diazabicyclo[2.2.2]octane in the solvothermal synthesis of iodobismuthates. Inorg. Chem. 60, 5333–5342 (2021).

    Article 

    Google Scholar
     

  • Son, J. et al. Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite. Nat. Commun. 14, 3124 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. The soft molecular polycrystalline ferroelectric realized by the fluorination effect. J. Am. Chem. Soc. 142, 12486–12492 (2020).

    Article 

    Google Scholar
     

  • Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

    Article 

    Google Scholar
     

  • Zhang, W.-Y. et al. Precise molecular design of high-Tc 3D organic–inorganic perovskite ferroelectric: [MeHdabco]RbI3 (MeHdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane). J. Am. Chem. Soc. 139, 10897–10902 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Ferroelectricity induced by ordering of twisting motion in a molecular rotor. J. Am. Chem. Soc. 134, 11044–11049 (2012).

    Article 

    Google Scholar
     

  • Zhao, X.-M. et al. Polar molecule-based material with optic–electric switching constructed by polar anions. Inorg. Chem. 59, 5475–5482 (2020).

    Article 

    Google Scholar
     

  • Ai, Y. et al. Fluorine substitution induced high Tc of enantiomeric perovskite ferroelectrics: (R)- and (S)-3-(fluoropyrrolidinium)MnCl3. J. Am. Chem. Soc. 141, 4474–4479 (2019).

    Article 

    Google Scholar
     

  • Jach, E. et al. Dynamics of organic cations in switchable quinuclidinium metal chloride dielectrics. J. Phys. Chem. C 127, 2589–2602 (2023).

    Article 

    Google Scholar
     

  • Wojcik, N. A. et al. Tunable dielectric switching of (quinuclidinium)[MnCl4] hybrid compounds. J. Phys. Chem. C 125, 16810–16818 (2021).

    Article 

    Google Scholar
     

  • Jung, M.-H. The dual band and white-light emission from piperazine halide perovskites. CrystEngComm 24, 1413–1423 (2022).

    Article 

    Google Scholar
     

  • Liu, G. et al. Thermally induced reversible double phase transitions in an organic–inorganic hybrid iodoplumbate C4H12NPbI3 with symmetry breaking. Inorg. Chem. 55, 8025–8030 (2016).

    Article 

    Google Scholar
     

  • Zhang, H.-Y. et al. Methylphosphonium tin bromide: a 3D perovskite molecular ferroelectric semiconductor. Adv. Mater. 32, 2005213 (2020).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Giant polarization sensitivity via the anomalous photovoltaic effect in a two-dimensional perovskite ferroelectric. J. Am. Chem. Soc. 145, 16193–16199 (2023).

    Article 

    Google Scholar
     

  • Yuan, Y. et al. Anomalous photovoltaic effect in organic–inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Walser, M. P., Reichl, C., Wegscheider, W. & Salis, G. Direct mapping of the formation of a persistent spin helix. Nat. Phys. 8, 757–762 (2012).

    Article 

    Google Scholar
     

  • Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, R. et al. Ferroelectric CsGeI3 single crystals with a perovskite structure grown from aqueous solution. J. Phys. Chem. C 127, 635–641 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Searching for circular photo galvanic effect in oxyhalide perovskite Bi4NbO8Cl. Adv. Funct. Mater. 32, 2206343 (2022).

    Article 

    Google Scholar
     

  • Swift, M. W. & Lyons, J. L. Lone-pair stereochemistry induces ferroelectric distortion and the Rashba effect in inorganic halide perovskites. Chem. Mater. 35, 9370–9377 (2023).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Ferroelectricity in a semiconducting all-inorganic halide perovskite. Sci. Adv. 8, eabj5881 (2022).

    Article 

    Google Scholar
     

  • Smith, E. H., Benedek, N. A. & Fennie, C. J. Interplay of octahedral rotations and lone pair ferroelectricity in CsPbF3. Inorg. Chem. 54, 8536–8543 (2015).

    Article 

    Google Scholar
     

  • Hua, L. et al. Acquiring bulk anomalous photovoltaic effect in single crystals of a lead-free double perovskite with aromatic and alkali mixed-cations. Small 19, 2207393 (2023).

    Article 

    Google Scholar
     

  • Lei, Y. et al. Bulk photovoltaic effect of a hybrid ferroelectric semiconductor. Phys. Rev. B 109, 104110 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Pusch, A., Römer, U., Culcer, D. & Ekins-Daukes, N. J. Energy conversion efficiency of the bulk photovoltaic effect. PRX Energy 2, 013006 (2023).

    Article 

    Google Scholar
     

  • Jiang, J., Pendse, S., Zhang, L. & Shi, J. Strain related new sciences and devices in low-dimensional binary oxides. Nano Energy 104, 107917 (2022).

    Article 

    Google Scholar
     

  • Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S., Kim, Y., Tan, L. Z. & Rappe, A. M. Strain-induced ferroelectric topological insulator. Nano Lett. 16, 1663–1668 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Guo, H., Li, Z. J., Kim, S. C., Han, G. S. & Jung, H. S. Strain in halide perovskite solar cells: origins, impacts, and regulation. Sol. RRL 8, 2400203 (2024).

    Article 

    Google Scholar
     

  • Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Du, T. et al. Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite. Adv. Mater. 34, 2107850 (2022).

    Article 

    Google Scholar
     

  • Li, J. & Haney, P. M. Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3. Appl. Phys. Lett. 109, 193903 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, S. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. 23, 1222–1229 (2024).

    Article 

    Google Scholar
     

  • Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Huang, P.-J. et al. Chirality-dependent circular photogalvanic effect in enantiomorphic 2D organic–inorganic hybrid perovskites. Adv. Mater. 33, 2008611 (2021).

    Article 

    Google Scholar
     

  • Zhu, Z. et al. Metal halide perovskites: stability and sensing-ability. J. Mater. Chem. C 6, 10121–10137 (2018).

    Article 

    Google Scholar
     

  • Cai, Y. et al. A van der Waals photo-ferroelectric synapse. Adv. Electron. Mater. 8, 2200326 (2022).

    Article 

    Google Scholar
     

  • Gou, G., Young, J., Liu, X. & Rondinelli, J. M. Interplay of cation ordering and ferroelectricity in perovskite tin iodides: designing a polar halide perovskite for photovoltaic applications. Inorg. Chem. 56, 26–32 (2017).

    Article 

    Google Scholar
     

  • Lopez-Varo, P. et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 653, 1–40 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Article 

    Google Scholar
     

  • Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ünlü, F. et al. Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Mater. 8, 070901 (2020).

    Article 
    ADS 

    Google Scholar