• Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Grigorenko, A. N., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

    Article 

    Google Scholar
     

  • Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Song, J. C. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Graef, H. et al. Ultra-long wavelength Dirac plasmons in graphene capacitors. J. Phys. Mater. 1, 01LT02 (2018).

    Article 

    Google Scholar
     

  • Yoshioka, K. et al. On-chip transfer of ultrashort graphene plasmon wave packets using terahertz electronics. Nat. Electron. 7, 537–544 (2024).

    Article 

    Google Scholar
     

  • Zhao, W. et al. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 614, 688–693 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Eckhardt, C. J. et al. Theory of resonantly enhanced photo-induced superconductivity. Nat. Commun. 15, 2300 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Curtis, J. B., Michael, M. H. & Demler, E. Local fluctuations in cavity control of ferroelectricity. Phys. Rev. Res. 5, 043118 (2023).

    Article 

    Google Scholar
     

  • Masuki, K. & Ashida, Y. Cavity moiré materials: controlling magnetic frustration with quantum light–matter interaction. Phys. Rev. B 109, 195173 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Riolo, R. et al. Tuning Fermi liquids with polaritonic cavities. Proc. Natl Acad. Sci. USA 122, e2407995122 (2025).

    Article 

    Google Scholar
     

  • Helmrich, F. et al. Cavity-driven attractive interactions in quantum materials. Preprint at https://arxiv.org/html/2408.00189v3 (2025).

  • De Liberato, S. Virtual photons in the ground state of a dissipative system. Nat. Commun. 8, 1465 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Modern Phys. 91, 025005 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article 

    Google Scholar
     

  • Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science 375, 1030–1034 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Enkner, J. et al. Tunable vacuum-field control of fractional and integer quantum Hall phases. Nature 641, 884–889 (2025).

    Article 

    Google Scholar
     

  • Lin, Z. et al. Remote gate control of topological transitions in moiré superlattices via cavity vacuum fields. Proc. Natl Acad. Sci. USA 120, e2306584120 (2023).

    Article 

    Google Scholar
     

  • Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Potts, A. M. et al. On-chip time-domain terahertz spectroscopy of superconducting films below the diffraction limit. Nano Lett. 23, 3835–3841 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, S.-D. et al. Direct measurement of terahertz conductivity in a gated monolayer semiconductor. Nano Lett. 25, 7998–8002 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Seo, J. et al. On-chip terahertz spectroscopy for dual-gated van der Waals heterostructures at cryogenic temperatures. Nano Lett. 24, 15060–15067 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Berman, O. L., Kezerashvili, R. Y., Lozovik, Y. E. & Snoke, D. W. Bose–Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity. Philos. Trans. R. Soc. A 368, 5459–5482 (2010).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • De Angelis, E., De Martini, F., Mataloni, P. & Giangrasso, M. Bose–Einstein partition distribution in microcavity quantum superradiance. Phys. Rev. A 64, 023809 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci. Adv. 10, eadp3725 (2024).

    Article 

    Google Scholar
     

  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article 

    Google Scholar
     

  • Karadi, C. et al. Dynamic response of a quantum point contact. JOSA B 11, 2566–2571 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, Z., Gabor, N. M., Sharping, J. E., Gaeta, A. L. & McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nanotechnol. 3, 201–205 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wang, E. et al. Superconducting nonlinear transport in optically driven high-temperature K3C60. Nat. Commun. 14, 7233 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Island, J. O. et al. On-chip terahertz modulation and emission with integrated graphene junctions. Appl. Phys. Lett. 116, 161104 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Karnetzky, C. et al. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun. 9, 2471 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Armitage, N. Electrodynamics of correlated electron systems. Preprint at https://arxiv.org/abs/0908.1126 (2009).

  • Kusyak, K. et al. Monolithic optoelectronic circuit design for on-chip terahertz applications. APL Photonics 10, 076117 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Di Paolo, F. Networks and Devices Using Planar Transmissions Lines (CRC Press, 2018).

  • Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971–979 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Castilla, S. et al. Electrical spectroscopy of polaritonic nanoresonators. Nat. Commun. 15, 8635 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Michael, M. H. et al. Resolving self-cavity effects in two-dimensional quantum materials. Preprint at https://arxiv.org/abs/2505.12799 (2025).

  • Svintsov, D. A. & Alymov, G. V. Refraction laws for two-dimensional plasmons. Phys. Rev. B 108, L121410 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, S. et al. Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime interference of electron–photon quasiparticles. Sci. Adv. 10, eado5553 (2024).

    Article 

    Google Scholar
     

  • Hwang, E. & Sarma, S. D. Plasmon modes of spatially separated double-layer graphene. Phys. Rev. B 80, 205405 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Van Loon, E., Hafermann, H., Lichtenstein, A., Rubtsov, A. & Katsnelson, M. Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion. Phys. Rev. Lett. 113, 246407 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, K., Strauf, S. & Yang, E. A systematic study of graphite local oxidation lithography parameters using an atomic force microscope. Nanosci. Nanotechnol. Lett. 2, 185–188 (2010).

    Article 

    Google Scholar
     

  • Kipp, G. et al. Data supporting Cavity electrodynamics of van der Waals heterostructures. Edmond https://doi.org/10.17617/3.YUZ9O9 (2025).