Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Brandow, B. H. Electronic structure of Mott insulators. Adv. Phys. 26, 652 (1977).
Mott, N. F. & Peierls, R. Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49, 72–73 (1937).
Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 114, 6996–7000 (2017).
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).
Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Li, T. et al. Continuous Mott transition in semiconductor moire superlattices. Nature 597, 350–354 (2021).
Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237 (2019).
Fath, M. et al. Spatially inhomogeneous metal-insulator transition in doped manganites. Science 285, 1540 (1999).
Chatzieleftheriou, M. et al. Mott quantum critical points at finite doping. Phys. Rev. Lett. 130, 066401 (2023).
Gelabert, M., Lachicotte, R. & DiSalvo, F. Insulator-metal and structural phase phenomena in KxBa1-xCoS2 (x Chem. Mater. 10, 613–619 (1998).
Di Salvo, F. J., Wilson, J. A., Bagley, B. G. & Waszczak, J. V. Effects of doping on charge-density waves in layer compounds. Phys. Rev. B 12, 2220–2236 (1975).
Di Salvo, F. J., Maines, R. G., Waszczak, J. V. & Schwall, R. E. Preparation and properties of 1T-TaSe2. Solid State Commun. 14, 497–501 (1974).
Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philoso. Mag. B 39, 229–244 (1979).
Colonna, S. et al. Mott phase at the surface of 1T-TaSe2 observed by scanning tunneling microscopy. Phys. Rev. Lett. 94, 036405 (2005).
Perfetti, L. et al. Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2. Phys. Rev. Lett. 90, 166401 (2003).
Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).
Lin, H. et al. Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2. Nano Res. 13, 133–137 (2020).
Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218 (2020).
Nakata, Y. et al. Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2. Nat. Commun. 12, 5873 (2021).
Zhang, H. et al. Impenetrable barrier at the Metal-Mott insulator junction in polymorphic 1H and 1T-NbSe2 lateral heterostructure. J. Phys. Chem. Lett. 13, 10713 (2022).
Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).
Butler, C. J., Yoshida, M., Hanaguri, T. & Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 11, 2477 (2020).
Qiu, D. Y., Da Jornada, F. H. & Louie, S. G. Screening and many-body effects in two-dimensional crystals: monolayer MoS2. Phys. Rev. B 93, 235435 (2016).
Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal-semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).
Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11, 4215 (2020).
Wang, Y. et al. Dualistic insulator states in 1T-TaS2 crystals. Nat. Commun. 15, 3425 (2024).
Calandra, M. Phonon-assisted magnetic Mott-insulating state in the charge density wave phase of single-layer 1T-NbSe2. Phys. Rev. Lett. 121, 026401 (2018).
Jiang, T. et al. Two-dimensional charge density wave TaX2 (X = S, Se, Te) from first principles. Phys. Rev. B 104, 075147 (2021).
He, W. Y. et al. Spinon fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).
Chen, H. et al. Spectroscopic evidence for possible quantum spin liquid behavior in a two-dimensional Mott insulator. Phys. Rev. Lett. 134, 066402 (2025).
Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-TC superconductors. Phys. Rev. B 57, R11093–R11096 (1998).
Ohta, Y., Tohyama, T. & Maekawa, S. Apex oxygen and critical temperature in copper oxide superconductors: universal correlation with the stability of local singlets. Phys. Rev. B 43, 2968–2982 (1991).
Slezak, J. A. et al. Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells. Proc. Natl. Acad. Sci. USA 105, 3203–3208 (2008).
Weber, C., Haule, K. & Kotliar, G. Apical oxygens and correlation strength in electron- and hole-doped copper oxides. Phys. Rev. B 82, 125107 (2010).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Langreth, D. C. & Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28, 1809–1834 (1983).
Darancet, P., Millis, A. J. & Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134 (2014).
Wang, V., Xu, N., Liu, J. C., Tang, G. & Geng, W. T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).