Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2011)
Kuroiwa, K. & Yamasaki, H. General quantum resource theories: distillation, formation and consistent resource measures. Quantum 4, 355 (2020).
Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
Chitambar, E., Leung, D., Mančinska, L., Ozols, M. & Winter, A. Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328, 303 (2014).
Yamasaki, H., Kuroiwa, K., Hayden, P. & Lami, L. Entanglement cost for infinite-dimensional physical systems. Preprint at https://arxiv.org/abs/2401.09554 (2024).
Carnot, S. Reflections on the Motive Power of Heat and on Machines Fitted to Develop that Power (J. Wiley, 1890).
Clausius, R. On a modified form of the second fundamental theorem in the mechanical theory of heat. London Edinb. Dublin Philos. Mag. J. Sci. 12, 81 (1856).
Thomson, W. On the dynamical theory of heat, with numerical results deduced from Mr Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Trans. R. Soc. Edinb. 20, 261 (1853).
Lieb, E. H. & Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1 (1999).
Lieb, E. H. & Yngvason, J. in Statistical Mechanics: Selecta of Elliott H. Lieb (eds Nachtergaele, B., Solovej, J. P. & Yngvason, J.) 353–363 (Springer, 2004).
Lieb, E. H. & Yngvason, J. A fresh look at entropy and the second law of thermodynamics. Phys. Today 53, 32 (2000).
Lewis, G. & Randall, M. Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill, 1923).
Guggenheim, E. Modern Thermodynamics by the Methods of Willard Gibbs (Methuen & Company Limited, 1933).
Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961).
Meier, F. & Yamasaki, H. Energy-consumption advantage of quantum computation. PRX Energy 4, 023008 (2025).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948).
Cover, T. & Thomas, J. Elements of Information Theory (Wiley, 2012).
Vidal, G. & Cirac, J. I. Irreversibility in asymptotic manipulations of entanglement. Phys. Rev. Lett. 86, 5803 (2001).
Wang, X. & Duan, R. Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose. Phys. Rev. Lett. 119, 180506 (2017).
Lami, L. & Regula, B. No second law of entanglement manipulation after all. Nat. Phys. 19, 184 (2023).
Brandão, F. G. S. L. & Plenio, M. B. Entanglement theory and the second law of thermodynamics. Nat. Phys. 4, 873–877 (2008).
Brandao, F. G. & Plenio, M. B. A reversible theory of entanglement and its relation to the second law. Commun. Math. Phys. 295, 829 (2010).
Brandão, F. G. S. L. & Plenio, M. B. A generalization of quantum Stein’s lemma. Commun. Math. Phys. 295, 791 (2010).
Brandão, F. G. S. L. & Gour, G. Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015).
Hiai, F. & Petz, D. The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99 (1991).
Ogawa, T. & Nagaoka, H. Strong converse and stein’s lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 46, 2428 (2000).
Fang, K., Gour, G. & Wang, X. Towards the ultimate limits of quantum channel discrimination and quantum communication. Sci. China Inf. Sci. 68, 180509 (2025).
Berta, M. et al. On a gap in the proof of the generalised quantum Stein’s lemma and its consequences for the reversibility of quantum resources. Quantum 7, 1103 (2023).
Berta, M. et al. The tangled state of quantum hypothesis testing. Nat. Phys. 20, 172 (2024).
Yamasaki, H. & Kuroiwa, K. Generalized quantum Stein’s lemma: redeeming second law of resource theories. Preprint at https://arxiv.org/abs/2401.01926 (2024).
Hayashi, M. Optimal sequence of quantum measurements in the sense of stein’s lemma in quantum hypothesis testing. J. Phys. A Math. Gen. 35, 10759 (2002).
Nagaoka, H. & Hayashi, M. An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses. IEEE Trans. Inf. Theory 53, 534 (2007).
Hayashi, M. Quantum Information Theory: Mathematical Foundation (Springer, 2016).
Lami, L. A solution of the generalised quantum Stein’s lemma. IEEE Trans. Inf. Theory 71, 4454–4454 (2025).
Tomamichel, M. & Hayashi, M. Operational interpretation of Rényi information measures via composite hypothesis testing against product and Markov distributions. IEEE Trans. Inf. Theory 64, 1064 (2018).
Nagaoka, H. in Asymptotic Theory of Quantum Statistical Inference (ed. Hayashi, M.) 64–65 (World Scientific, 2005).
Polyanskiy, Y., Poor, H. V. & Verdu, S. Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 56, 2307 (2010).
Polyanskiy, Y. Saddle point in the minimax converse for channel coding. IEEE Trans. Inf. Theory 59, 2576 (2013).
Tyagi, H. & Watanabe, S. A bound for multiparty secret key agreement and implications for a problem of secure computing. In Advances in Cryptology—EUROCRYPT 2014 369–386 (Springer, 2014).
Tyagi, H. & Watanabe, S. Converses for secret key agreement and secure computing. IEEE Trans. Inf. Theory 61, 4809 (2015).
Hayashi, M. & Owari, M. Tight asymptotic bounds on local hypothesis testing between a pure bipartite state and the white noise state. IEEE Trans. Inf. Theory 63, 4008 (2017).
Renner, R. Security of quantum key distribution. Int. J. Quantum Inf. 06, 1 (2008).
Renner, R. Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3, 645 (2007).
Bluhm, A., Capel, A., Gondolf, P. & Pérez-Hernández, A. General continuity bounds for quantum relative entropies. In Proc. 2023 IEEE International Symposium on Information Theory (ISIT) 162–167 (IEEE, 2023).
Bluhm, A., Capel, A., Gondolf, P. & Pérez-Hernández, A. Continuity of quantum entropic quantities via almost convexity. IEEE Trans. Inf. Theory 69, 5869 (2023).
Zhao, Q., Liu, Y., Yuan, X., Chitambar, E. & Ma, X. One-shot coherence dilution. Phys. Rev. Lett. 120, 070403 (2018).
Chitambar, E. Dephasing-covariant operations enable asymptotic reversibility of quantum resources. Phys. Rev. A 97, 050301 (2018).
Horodecki, M., Horodecki, P. & Oppenheim, J. Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003).
Brandão, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M. & Spekkens, R. W. Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013).
Brandão, F. G. S. L., Harrow, A. W., Lee, J. R. & Peres, Y. Adversarial hypothesis testing and a quantum Stein’s lemma for restricted measurements. IEEE Trans. Inf. Theory 66, 5037 (2020).
Berta, M. & Majenz, C. Disentanglement cost of quantum states. Phys. Rev. Lett. 121, 190503 (2018).
Gao, L. & Rahaman, M. Generalized Stein’s lemma and asymptotic equipartition property for subalgebra entropies. Preprint at https://arxiv.org/abs/2401.03090 (2024).
Hayashi, M. & Tomamichel, M. Correlation detection and an operational interpretation of the Rényi mutual information. J. Math. Phys. 57, 102201 (2016).
Regula, B. & Lami, L. Reversibility of quantum resources through probabilistic protocols. Nat. Commun. 15, 3096 (2024).
Chen, Y.-A., Wang, X., Zhang, L. & Zhu, C. Reversible entanglement beyond quantum operations. Phys. Rev. Res. 7, 013297 (2025).
Ganardi, R., Kondra, T. V., Ng, N. H. Y. & Streltsov, A. Second law of entanglement manipulation with entanglement battery. Phys. Rev. Lett. 135, 010202 (2025).
Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996).
Hayden, P. M., Horodecki, M. & Terhal, B. M. The asymptotic entanglement cost of preparing a quantum state. J. Phys. A Math. Gen. 34, 6891 (2001).
Krueger, O. & Werner, R. F. Problem 20 in some open problems in quantum information theory. Preprint at https://arxiv.org/abs/quant-ph/0504166 (2005).
Kuroiwa, K. & Yamasaki, H. Asymptotically consistent measures of general quantum resources: discord, non-Markovianity, and non-Gaussianity. Phys. Rev. A 104, L020401 (2021).
Kuroiwa, K., Takagi, R., Adesso, G. & Yamasaki, H. Every quantum helps: operational advantage of quantum resources beyond convexity. Phys. Rev. Lett. 132, 150201 (2024).
Kuroiwa, K., Takagi, R., Adesso, G. & Yamasaki, H. Robustness- and weight-based resource measures without convexity restriction: multicopy witness and operational advantage in static and dynamical quantum resource theories. Phys. Rev. A 109, 042403 (2024).
Regula, B., Lami, L., Ferrari, G. & Takagi, R. Operational quantification of continuous-variable quantum resources. Phys. Rev. Lett. 126, 110403 (2021).
Lami, L., Regula, B., Takagi, R. & Ferrari, G. Framework for resource quantification in infinite-dimensional general probabilistic theories. Phys. Rev. A 103, 032424 (2021).
Ferrari, G., Lami, L., Theurer, T. & Plenio, M. B. Asymptotic state transformations of continuous variable resources. Commun. Math. Phys. 398, 291 (2023).
Piani, M. Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett. 103, 160504 (2009).
Brandao, F. G., Christandl, M. & Yard, J. Faithful squashed entanglement. Commun. Math. Phys. 306, 805 (2011).
Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).
Neumann, J. V. Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295 (1928).
Sion, M. On general minimax theorems. Pac. J. Math. 8, 171–176 (1958).
Komiya, H. Elementary proof for Sion’s minimax theorem. Kodai Math. J. 11, 5 (1988).
Takagi, R., Wang, K. & Hayashi, M. Application of the resource theory of channels to communication scenarios. Phys. Rev. Lett. 124, 120502 (2020).
Faist, P., Berta, M. & Brandão, F. Thermodynamic capacity of quantum processes. Phys. Rev. Lett. 122, 200601 (2019).
Bennett, C., Shor, P., Smolin, J. & Thapliyal, A. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637 (2002).
Berta, M., Christandl, M. & Renner, R. The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys. 306, 579 (2011).
Bennett, C. H., Devetak, I., Harrow, A. W., Shor, P. W. & Winter, A. The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels. IEEE Trans. Inf. Theory 60, 2926 (2014).
Holevo, A. S. Quantum coding theorems. Russ. Math. Surv. 53, 1295 (1998).
Horodecki, M., Shor, P. W. & Ruskai, M. B. Entanglement breaking channels. Rev. Math. Phys. 15, 629 (2003).
Chiribella, G., D’Ariano, G. M. & Perinotti, P. Quantum circuit architecture. Phys. Rev. Lett. 101, 060401 (2008).
Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009).
Gour, G. & Winter, A. How to quantify a dynamical quantum resource. Phys. Rev. Lett. 123, 150401 (2019).
Gour, G., Marvian, I. & Spekkens, R. W. Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009).
Hickey, A. & Gour, G. Quantifying the imaginarity of quantum mechanics. J. Phys. A Math. Theor. 51, 414009 (2018).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
