• Rai, P. K., Lee, J., Brown, R. J. & Kim, K.-H. Micro-and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. J. Clean. Prod. 291, 125240 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ali, I. et al. Innovations in the development of promising adsorbents for the remediation of Microplastics and Nanoplastics–a critical review. Water Res. 230, 119526 (2023).

  • Ali, I. et al. Micro-and nanoplastics in wastewater treatment plants: occurrence, removal, fate, impacts and remediation technologies–a critical review. Chem. Eng. J. 423, 130205 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ali, I. et al. Micro-and nanoplastics in the environment: Occurrence, detection, characterization and toxicity–A critical review. J. Clean. Prod. 313, 127863 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chandel, R. & Thakur, S. Microplastic: Evaluating the impact on soil-microbes and plant system. In Bioremediation: Removing Microplastics from Soil (eds Thakur, S. & Singh, L.) 71–80 (ACS Publications, 2023).

  • Thompson, R. C. et al. Lost at sea: where is all the plastic?. Science 304, 838 (2004).

    Article 
    CAS 

    Google Scholar
     

  • de Souza Machado, A. A. et al. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 52, 9656–9665 (2018).

    Article 

    Google Scholar
     

  • Jaiswal, S., Sharma, B. & Shukla, P. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 17, 100567 (2020).

    Article 

    Google Scholar
     

  • Qi, Y. et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 387, 121711 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qi, Y. et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).

    Article 
    CAS 

    Google Scholar
     

  • de Souza Machado, A. A. et al. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53, 6044–6052 (2019).

    Article 

    Google Scholar
     

  • Ebere, E. C., Wirnkor, V. A. & Ngozi, V. E. Uptake of microplastics by plant: a reason to worry or to be happy?. World Sci. N. 131, 256–267 (2019).

    CAS 

    Google Scholar
     

  • Rillig, M. C. Microplastic disguising as soil carbon storage. Environ. Sci. Technol. 52, 6079–6080 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46, 6453–6454 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ng, E.-L. et al. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 627, 1377–1388 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. & Gao, X. Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Sci. Total Environ. 828, 154579 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. The dosage-and size-dependent effects of micro-and nanoplastics in lettuce roots and leaves at the growth, photosynthetic, and metabolomics levels. Plant Physiol. Biochem. 208, 108531 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. Sci. Total Environ. 908, 168219 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jung, Y. S. et al. Characterization and regulation of microplastic pollution for protecting planetary and human health. Environ. Pollut. 315, 120442 (2022).

  • Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chandel, R., Chauhan, S., Devi, S. & Thakur, S. Polystyrene microplastic degradation by a novel PGPR Bacillus spizizenii. J. Hazard. Mater. 491, 137892 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Auta, H. S., Emenike, C. U., Jayanthi, B. & Fauziah, S. H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 127, 15–21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Büks, F. & Kaupenjohann, M. Global concentrations of microplastic in soils, a review. Soil Discuss. 2020, 1–26 (2020).


    Google Scholar
     

  • Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 133, 236–246 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J. J. et al. Source, migration and toxicology of microplastics in soil. Environ. Int. 137, 105263 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Talvitie, J., Mikola, A., Koistinen, A. & Setälä, O. Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 123, 401–407 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, K., Wang, X., Wei, N., Song, Z. & Li, D. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ. Int. 132, 105127 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. Environ. Sci. Technol. 50, 10777–10779 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Song, J. et al. The environmental impact of mask-derived microplastics on soil ecosystems. Sci. Total Environ. 912, 169182 (2024).

    Article 
    CAS 

    Google Scholar
     

  • He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4, eaap8060 (2018).

    Article 

    Google Scholar
     

  • Gündoğdu, S., Çevik, C., Güzel, E. & Kilercioğlu, S. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ. Monit. Assess. 190, 1–10 (2018).

    Article 

    Google Scholar
     

  • Wright, S. L., Ulke, J., Font, A., Chan, K. L. A. & Kelly, F. J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 136, 105411 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klein, M. & Fischer, E. K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 685, 96–103 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, W. et al. A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. Sci. Total Environ. 912, 169469 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, J. et al. Effects of variable-sized polyethylene microplastics on soil chemical properties and functions and microbial communities in purple soil. Sci. Total Environ. 868, 161642 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Y., Yang, H., Du, Y., Li, X. & Li, X. Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain quality. J. Hazard. Mater. 474, 134816 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional non-biodegradable and new biodegradable microplastics. Environ. Pollut. 341, 122897 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 250, 831–838 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hou, L. et al. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 286, 131758 (2022).

    Article 
    CAS 

    Google Scholar
     

  • De Jesus, R. & Alkendi, R. A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution. Front. Microbiol. 13, 1066133 (2023).

    Article 

    Google Scholar
     

  • Paço, A. et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ. 586, 10–15 (2017).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 704, 135931 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Elahi, A., Bukhari, D. A., Shamim, S. & Rehman, A. Plastics degradation by microbes: A sustainable approach. J. King Saud. Univ.-Sci. 33, 101538 (2021).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Systematical review of interactions between microplastics and microorganisms in the soil environment. J. Hazard. Mater. 418, 126288 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ameen, F., Al-Shwaiman, H. A., Almalki, R., Al-Sabri, A. E. & Sholkamy, E. N. Degradation of polyvinyl chloride (PVC) microplastics employing the actinobacterial strain Streptomyces gobitricini. Biodegradation 36, 19 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Auta, H., Emenike, C. & Fauziah, S. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 231, 1552–1559 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 304, 119159 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khan, A. R. et al. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. Sci. Total Environ. 912, 169420 (2024).

  • Sushila, D. & Sanya, C. Soil microplastic remediation: exploring the role of microorganism/PGPR in sustainable cleanup. In Bioremediation: Removing Microplastics from Soil (eds Thakur, S. & Singh L.) 57–70 (ACS Publications, 2023).

  • Shah, M. & Ahmed, S. Chapter 5 – Bioremediation potential of rhizosphere microbes—current perspectives. In Rhizobiome: Ecology, Management and Application (eds Parray, J. A., Shameem, N., Egamberdieva, D. & Sayyed, R. Z.) 81–94 (Academic Press, 2023).

  • Olabemiwo, F. A., Hagan, A., Cham, M. & Cohan, F. M. Two plant-growth-promoting Bacillus species can utilize nanoplastics. Sci. Total Environ. 907, 167972 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Behera, S. & Das, S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. Chemosphere 334, 138928 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chia, R. W., Lee, J.-Y. & Cha, J. Bioremediation of soil microplastics: categories and mechanisms. In Bioremediation: Removing Microplastics from Soil (eds Thakur, S. & Singh L.) 19–32 (ACS Publications, 2023).

  • Ahmad, F., Saeed, Q., Shah, S. M. U., Gondal, M. A. & Mumtaz, S. Environmental sustainability: challenges and approaches. Nat. Res. Conserv. Adv. Sustain. 243–270 (2022).

  • Sharma, P., Bano, A., Singh, S. P. & Tong, Y. W. Chapter 1 – Microbial inoculants: Recent progress in formulations and methods of application. In Microbial Inoculants: Recent Progress and Applications (eds Sharma, V. K., Kumar, A., Passarini, M. R. Z., Parmar, S. & Singh, V. K.) 1–28 (Academic Press, 2023).

  • Liu, L. H. et al. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. Sci. Total Environ. 806, 150310 (2022).

  • Sun, Y. et al. The degradation performance of different microplastics and their effect on microbial community during composting process. Bioresour. Technol. 332, 125133 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gajendiran, A., Krishnamoorthy, S. & Abraham, J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6, 1–6 (2016).

    Article 

    Google Scholar
     

  • Osman, M. et al. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. J. Polym. Environ. 26, 301–310 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Usman, M. A., Momohjimoh, I. & Usman, A. O. Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Mater. Res. Express 7, 035302 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. 94, 1443–1476 (2019).

    Article 

    Google Scholar
     

  • Solanki, S., Sinha, S. & Singh, R. Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination. Biodegradation 33, 529–556 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, M. et al. Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. Sci. Rep. 8, 8472 (2018).

    Article 

    Google Scholar
     

  • Shin, J., Kim, J.-E., Lee, Y.-W. & Son, H. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum. Toxins 10, 112 (2018).

    Article 

    Google Scholar
     

  • Sánchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro-and microplastics biodegradation. Biotechnol. Adv. 40, 107501 (2020).

    Article 

    Google Scholar
     

  • Sánchez, C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009).

    Article 

    Google Scholar
     

  • Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).

    Article 

    Google Scholar
     

  • Du, H., Xie, Y. & Wang, J. Microplastic degradation methods and corresponding degradation mechanism: research status and future perspectives. J. Hazard. Mater. 418, 126377 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, J. et al. Microbial degradation and other environmental aspects of microplastics/plastics. Sci. Total Environ. 715, 136968 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abda, E. M., Muleta, A., Tafesse, M., Prabhu, S. V. & Aemro, A. Recent endeavors in microbial remediation of micro-and nanoplastics. Phys. Sci. Rev. 8, 2853–2877(2021).

  • Ambika et al. Microbial degradation of E-plastics in diverse ecosystems. In Microbial Technology for Sustainable E-waste Management (eds Debbarma, P., Kumar, S., Suyal, D. C. & Soni, R.) 177–199 (Springer, 2023).

  • Zhang, Y., Pedersen, J. N., Eser, B. E. & Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 107991 (2022).

  • Pathak, V. M. Exploitation of bacterial strains for microplastics (LDPE) biodegradation. Chemosphere 316, 137845 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tareen, A., Saeed, S., Iqbal, A., Batool, R. & Jamil, N. Biodeterioration of microplastics: A promising step towards plastics waste management. Polymers 14, 2275 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Adetunji, C. O. & Anani, O. A. Plastic-eating microorganisms: recent biotechnological techniques for recycling of plastic. Microbial Rejuvenation of Polluted Environment, Vol. 1, 353–372 (2021).

  • Mehmood, S. et al. Structural breakdown and phytotoxic assessments of PE degradation through acid hydrolysis, starch addition and Pseudomonas aeruginosa bioremediation. Environ. Res. 217, 114784 (2023).

  • Kim, H.-W. et al. Biodegradation of polystyrene by bacteria from the soil in common environments. J. Hazard. Mater. 416, 126239 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Skariyachan, S. et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 149, 52–68 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chattopadhyay, I. Role of microbiome and biofilm in environmental plastic degradation. Biocatal. Agric. Biotechnol. 39, 102263 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shams, A., Fischer, A., Bodnar, A. & Kliegman, M. Perspectives on Genetically Engineered Microorganisms and Their Regulation in the United States. ACS Synth. Biol. 13, 1412–1423 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Muhonja, C. N., Makonde, H., Magoma, G. & Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PloS one 13, e0198446 (2018).

    Article 

    Google Scholar
     

  • Munir, E., Harefa, R., Priyani, N. & Suryanto, D. In IOP Conference Series: Earth and Environmental Science. 012145 (IOP Publishing).

  • Ojha, N. et al. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep. 7, 39515 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, A. K. & Vijayakumar, R. Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environ., Dev. Sustain. 22, 1093–1104 (2020).

    Article 

    Google Scholar
     

  • Kang, J. et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings. Matter 1, 745–758 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Taghavi, N., Singhal, N., Zhuang, W.-Q. & Baroutian, S. Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere 263, 127975 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oviedo-Anchundia, R. et al. Analysis of the degradation of polyethylene, polystyrene and polyurethane mediated by three filamentous fungi isolated from the Antarctica. Afr. J. Biotechnol. 20, 66–76 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sheik, S., Chandrashekar, K., Swaroop, K. & Somashekarappa, H. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeterior. Biodegrad. 105, 21–29 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jeyakumar, D., Chirsteen, J. & Doble, M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour. Technol. 148, 78–85 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Williams, J. O. & Osahon, N. T. Assessment of microplastic degrading potential of fungal isolates from an estuary in rivers state, Nigeria. South Asian J. Res. Microbiol. 9, 11–19 (2021).

    Article 

    Google Scholar
     

  • Sarkhel, R., Sengupta, S., Das, P. & Bhowal, A. Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. J. Polym. Res. 27, 1–8 (2020).

    Article 

    Google Scholar
     

  • Sepperumal, U., Markandan, M. & Palraja, I. Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. J. Microbiol. Biotechnol. Res. 3, 47–53 (2013).


    Google Scholar
     

  • Wilkes, R.-A. & Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J. Appl. Microbiol. 123, 582–593 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wei, W. et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ. Sci. Technol. 53, 2509–2517 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Han, Z. et al. Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium identified in human feces and one from the Streptomyces genus. J. Hazard. Mater. 472, 134532 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Maroof, L. et al. Identification and characterization of low density polyethylene-degrading bacteria isolated from soils of waste disposal sites. Environ. Eng. Res. 26 (2021).

  • Nowak, B., Pająk, J., Drozd-Bratkowicz, M. & Rymarz, G. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int. Biodeterior. Biodegrad. 65, 757–767 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, B., Olanrewaju-Kehinde, D., Popoola, O. & James, E. Degradation of plastic and polythene materials by some selected microorganisms isolated from soil. World Appl Sci. J. 33, 1888–1891 (2015).

    CAS 

    Google Scholar
     

  • Harshvardhan, K. & Jha, B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull. 77, 100–106 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Montazer, Z., Habibi Najafi, M. B. & Levin, D. B. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 65, 224–234 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 380, 120899 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Asmita, K., Shubhamsingh, T. & Tejashree, S. Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India. Int. Res. J. Environ. Sci. 4, 77–85 (2015).

    CAS 

    Google Scholar
     

  • Oikawa, E., Linn, K. T., Endo, T., Oikawa, T. & Ishibashi, Y. Isolation and characterization of polystyrene degrading microorganisms for zero emission treatment of expanded polystyrene. Environ. Eng. Res. 40, 373–379 (2003).


    Google Scholar
     

  • Jeon, J.-M. et al. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym. Degrad. Stab. 191, 109662 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jeon, H. J. & Kim, M. N. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int. Biodeterior. Biodegrad. 115, 244–249 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. N. Biotechnol. 52, 35–41 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, R., Khan, F., Alqahtani, F. M., Hashem, M. & Ahmad, F. Plant growth–promoting Rhizobacteria (PGPR) assisted bioremediation of Heavy Metal Toxicity. Appl. Biochem. Biotechnol. 196, 2928–2956 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, H. et al. Insights on the bioremediation technologies for pesticide-contaminated soils. Environ. Geochem. Health 44, 1329–1354 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bao, H. et al. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils. J. Hazard. Mater. 385, 121595 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Haghollahi, A., Fazaelipoor, M. H. & Schaffie, M. The effect of soil type on the bioremediation of petroleum contaminated soils. J. Environ. Manag. 180, 197–201 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M., Guo, P., Wu, B. & Guo, S. Change in soil ion content and soil water-holding capacity during electro-bioremediation of petroleum contaminated saline soil. J. Hazard. Mater. 387, 122003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Adedeji, J. A. et al. Microbial bioremediation and biodegradation of petroleum products—a mini review. Appl. Sci. 12, 12212 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M. & Assefa, F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: mechanisms and impacts. J. Chem. 2021, 9823362 (2021).

    Article 

    Google Scholar