CBD Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework. 18 Dec. CBD/COP/15/L.25 (2022).
Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).
Krause, S. et al. Microbial trait-based approaches for agroecosystems. Adv. Agron. 175, 259–299 (2022).
Bánki, O. et al. Catalogue of Life (Version 2025-05-13). (Catalogue of Life, Amsterdam, Netherlands, accessed 11 June 2025) https://doi.org/10.48580/dgqdn.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on Earth and in the ocean? Plos Biol. 9, e1001127 (2011).
Wiens, J. J. How many species are there on Earth? Progress and problems. Plos Biol. 21, e3002388 (2023).
Larsen, B. B., Miller, E. C., Rhodes, M. K. & Wiens, J. J. Inordinate fondness multiplied and redistributed: the number of species on earth and the new pie of life. Q. Rev. Biol. 92, 229–265 (2017).
Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113, 5970–5975 (2016).
Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based estimate of Earth’s bacterial and archaeal diversity. Plos Biol. 17, e3000106 (2019).
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, funk-0052–funk-2016 (2017).
Niskanen, T. et al. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Env. Resour. 48, 149–176 (2023).
Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C. & Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Micr. 70, 5607–5612 (2020).
Foissner, W. Protist diversity and distribution: some basic considerations. Biodivers. Conserv. 17, 235–242 (2008).
Adl, S. M. Protistology (Elsevier, 2024).
Burki, F., Sandin, M. M. & Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 31, R1267–R1280 (2021).
Grossmann, L. et al. Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 10, 2269–2279 (2016).
Pawlowski, J. et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419 (2012).
Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
Srivathsan, A. et al. Convergence of dominance and neglect in flying insect diversity. Nat. Ecol. Evol. 7, 1012–1021 (2023).
IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2024).
Overmann, J., Abt, B. & Sikorski, J. Present and future of cultivating bacteria. Annu. Rev. Microbiol. 71, 711–730 (2017).
Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006).
Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).
Zedda, L. & Rambold, G. in Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2 (eds Upreti, D. K., Divakar, P. K., Shukla, V. & Bajpai, R.) 121–145 (Springer, 2015).
Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agric. Environ. 3, e12116 (2024).
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1148 (IPBES secretariat, Bonn, 2019).
Ceballos, G. & Ehrlich, P. R. Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl. Acad. Sci. USA 120, e2306987120 (2023).
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS ONE 12, e0185809 (2017).
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Wirth, C., Bruelheide, H., Farwig, N., Marx, J. M. & Settele, J. Faktencheck Artenvielfalt (Oekom Verlag, 2024).
Antonelli, A. et al. State of the World’s Plants and Fungi 2023 (Royal Botanic Gardens, 2023).
Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
Ondo, I. et al. Plant diversity darkspots for global collection priorities. New Phytol. 244, 719–733 (2024).
Mammola, S. et al. Perspectives and pitfalls in preserving subterranean biodiversity through protected areas. npj Biodiv. 3, 2 (2024).
https://www.protectedplanet.net/country/DEU date of access: 30.07.2025.
Venter, O. et al. Bias in protected-area location and its effects on longterm aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2017).
Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
Zabala, A., Palomo, I., Múgica, M., & Montes, C. Challenges beyond reaching a 30% of area protection. npj Biodiv. 3, 9 (2024).
Willis, K. J. et al. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos. T. R. Soc. B 362, 175–187 (2007).
Jeschke, J. M. et al. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194 (2014).
Haubrock, P. J. et al. Germany’s established non-native species: a comprehensive breakdown. Environ. Sci. Eur. 37, 56 (2025).
COM. EU Biodiversity Strategy for 2030. Bringing nature back into our lives. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the committee of the Regions. 380 pp. (Brusselles, 2020).
Union, E. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869. Off. J. Eur. Union 1991, 1 (2024).
Hochkirch, A. et al. European red list of insect taxonomists. Publication Office of the European Union, Luxembourg (2022).
Páll-Gergely, B. et al. Identification crisis: a fauna-wide estimate of biodiversity expertise shows massive decline in a Central European country. Biodivers. Conserv. 33, 3871–3903 (2024).
Hofmann, G., Lange-Bertalot, H., Werum, M. & Klee, R. Rote Liste und Gesamtartenliste der limnischen Kieselalgen (Bacillariophyta) Deutschlands. In Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands 7 (eds. Metzing, D., Hofbauer, N., Ludwig, G. & Matzke-Hajek, G.) 601–708 (Landwirtschaftsverlag, Münster, Naturschutz und Biologische Vielfalt 70, 2018).
Wirth et al. Rote Liste und Artenverzeichnis der Flechten und flechtenbewohnenden Pilze Deutschlands. Naturschutz Biol. Vielfalt 70, 7–122 (2011).
Printzen, C. et al. Die Flechten, flechtenbewohnenden und flechtenähnlichen Pilze Deutschlands–eine überarbeitete Checkliste. Herzogia 35, 193–393 (2022).
Buchner, D. et al. Upscaling biodiversity monitoring: Metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2025).
Chimeno, C. et al. Peering into the darkness: DNA barcoding reveals surprisingly high diversity of unknown species of Diptera (Insecta) in Germany. Insects 13, 82 (2022).
Karlsson, D., Forshage, M., Holston, K. & Ronquist, F. The data of the Swedish Malaise Trap Project, a countrywide inventory of Sweden’s insect fauna. Biodiv. Data J. 8, e56286 (2020).
Roume, H. et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biof. Microb. 1, 1–11 (2015).
Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers. Conserv. 19, 3035–3048 (2010).
Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).
Anthony, M. A., Bender, S. F. & van der Heijden, M. G. Enumerating soil biodiversity. Proc. Natl. Acad. Sci. USA 120, e2304663120 (2023).
Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).
Leibniz Research Network Biodiversity. 10 Must Knows from Biodiversity Science (Thonicke, K. et al.) https://doi.org/10.5281/zenodo.10837769 (Potsdam, Germany, 2024).
Hohberg, K., Ristok, C., Eisenhauer, N., Tebbe, C. C. & Scheu, S. Status and trends in soil biodiversity – a national survey of Germany: – This paper is part of the special collection ‘Faktencheck Artenvielfalt’. Soil Org. https://doi.org/10.25674/449 (2025).
Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).
Sturhan, D. & Hohberg, K. Nematodes of the order Tylenchida in Germany–the non-phytoparasitic species. Soil Org. 88, 19–41 (2016).
Andrássy, I. Pedozoologica Hungarica Vol. 3 (eds Csuzdi, C. & Mahunka, S.) 518 (Hungarian Natural History Museum, 2005).
Weigmann, G., Horak, F., Franke, K. & Christian, A. Verbreitung und Ökologie der Hornmilben (Oribatida) in Deutschland. Peckiana 10, 1–171 (2015).
Lehmitz, R. et al. Rote Liste und Gesamtartenliste der Regenwürmer (Lumbricidae et Criodrillidae) Deutschlands. Naturschutz und Biologische Vielfalt 70, 565−590 (2016).
Szederjesi, T., Höser, N., Walter, R. & Csuzdi, C. Helodrilus bavaricus, a remarkable new earthworm species from Bavaria, Germany (Crassiclitellata, Lumbricidae). Opusc. Zool. 55, 105−108 (2024).
Pauls, S. U., Graf, W., Haase, P., Lumbsch, H. T. & Waringer, J. Grazers, shredders and filtering carnivores—the evolution of feeding ecology in Drusinae (Trichoptera: Limnephilidae): insights from a molecular phylogeny. Mol. Phylogenet. Evol. 46, 776–791 (2008).
Oláh, J., Vinçon, G., & Coppa, G. On the Trichoptera of Italy with delineation of incipient sibling species. Opusc. Zool. 52, 3−67 (2021).
Li, M. et al. The diversity and biogeography of bacterial communities in lake sediments across different climate zones. Environ. Res. 263, 120028 (2024).
Rossel, S. & Martínez Arbizu, P. Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9, 9182 (2019).
Armonies, W. et al. Microscopic species make the diversity: a checklist of marine flora and fauna around the Island of Sylt in the North Sea. Helgol. Mar. Res. 72, 11 (2018).
Mielke, W. Systematik der Copepoda eines Sandstrandes der Nordseeinsel Sylt. Vol. 52 (Akademie der Wiss. und Literatur, 1975).
Linné, C. v. Species plantarum :exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae: Impensis Laurentii Salvii (1753).
Darwin, C., Hooker, J. D., Jackson, B. D. & Royal Botanic Gardens, K. Index Kewensis Plantarum Phanerogamarum – Nomina et synonyma omnium generum et specierum a Linnaeo usque ad annum MDCCCLXXXV complectens nomine recepto auctore patria unicuique plantae subjectis. Vol. 1-pt. 1–2 (1893).
Albertini, J. B. v. & Schweinitz, L. D. v. Conspectus fungorum in Lusatiae Superioris agro Niskiensi crescentium, e methodo Persooniana. Lipsiae: Sumtibus Kummerianis (1805).
Wührl, L. et al. DiversityScanner: robotic handling of small invertebrates with machine learning methods. Mol. Ecol. Resour. 22, 1626–1638 (2022).
Wührl, L. et al. in 2023 3rd International Conference on Robotics, Automation and Artificial Intelligence (RAAI) 226–230 (IEEE, 2023).
Klug, N. et al. Automated photogrammetric close-range imaging system for small invertebrates using acoustic levitation. Authorea Preprints, (2024).
Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. 9, 2216–2225 (2018).
Yang, B. et al. Identification of species by combining molecular and morphological data using convolutional neural networks. Syst. Biol. 71, 690–705 (2022).
Srivathsan, A. et al. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 1–21 (2021).
Collins, G. et al. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun. Biol. 6, 1241 (2023).
Rossel, S. et al. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci. Rep. 14, 1280 (2024).
Hersch-Green, E. I., Turley, N. E. & Johnson, M. T. Community genetics: what have we accomplished and where should we be going? Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1453–1460 (2011).
Hartop, E., Srivathsan, A., Ronquist, F. & Meier, R. Towards large-scale integrative taxonomy (LIT): resolving the data conundrum for dark taxa. Syst. Biol. 71, 1404–1422 (2022).
Fernandez-Triana, J. L. Turbo taxonomy approaches: lessons from the past and recommendations for the future based on the experience with Braconidae (Hymenoptera) parasitoid wasps. ZooKeys 1087, 199 (2022).
Raupach, M. J., Amann, R., Wheeler, Q. D. & Roos, C. The application of “-omics” technologies for the classification and identification of animals. Org. Divers. Evol. 16, 1–12 (2016).
Meier, R. et al. “Dark taxonomy”: a new protocol for overcoming the taxonomic impediments for dark taxa and broadening the taxon base for biodiversity assessment. Cladistics, (2023).
Milošević, D. et al. Unsupervised deep clustering as a tool for the identification of dark taxa in biomonitoring. Environ. Monit. Assess 197, 858 (2025).
Melcher, A. C., Weber, S., Birkhofer, K., Harms, D. & Krehenwinkel, H. To pool or not to pool: pooled metabarcoding does not affect estimates of prey diversity in spider gut content analysis. Ecol. Entomol. 49, 768–778 (2024).
Schmidt, A. et al. Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties. Ecol. Evol. 12, e8991 (2022).
Johnson, K. R., Owens, I. F. & Group, G. C. A global approach for natural history museum collections. Science 379, 1192–1194 (2023).
Bebber, D. P. et al. Herbaria are a major frontier for species discovery. Proc. Natl. Acad. Sci. USA 107, 22169–22171 (2010).
Lücking, R. et al. Cora timucua (Hygrophoraceae), a new and potentially extinct, previously misidentified basidiolichen of Florida inland scrub documented from historical collections. Bryologist 123, 657–673 (2020).
Sigwart, J. D. et al. Collectomics – towards a new framework to integrate museum collections to address global challenges. Nat. Hist. Collect. Museomics 2, 1–20 (2025).
Tosa et al. The rapid rise of next-generation natural history. Front. Ecol. Evol. 9, 698131 (2021).
Ellwood, E. R. et al. Worldwide engagement for digitizing biocollections (WeDigBio): The biocollections community’s citizen-science space on the calendar. Bioscience 68, 112–124 (2018).
von Konrat, M. et al. Using citizen science to bridge taxonomic discovery with education and outreach. Appl. Plant Sci. 6, e1023 (2018).
Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).
Geisen, M. J. I. et al. A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 136, 107536 (2019).
Potapov, A., Lindo, Z., Buchkowski, R. & Geisen, S. Multiple dimensions of soil food-web research: History and prospects. Eur. J. Soil Biol. 117, 103494 (2023).
Muelbaier, H. et al. Genomic evidence for the widespread presence of GH45 cellulases among soil invertebrates. Mol. Ecol. 33, e17351 (2024).
Sikorski, J. et al. The evolution of ecological diversity in Acidobacteria. Front. Microbiol. 13, 715637 (2022).
Sys, S., Weißbach, S., Jakob, L., Gerber, S. & Schneider, C. CollembolAI, a macrophotography and computer vision workflow to digitize and characterize samples of soil invertebrate communities preserved in fluid. Methods Ecol. Evol. 13, 2729–897–2742. 898 (2022).
Schneider, S. et al. Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision. Methods Ecol. Evol. 13, 346–357 (2022).
Filgueiras, C. C. et al. The smart soil organism detector: an instrument and machine learning pipeline for soil species identification. Biosens. Bioelectron. 221, 114417 (2023).
Feng, X. et al. A review of the heterogeneous landscape of biodiversity databases: opportunities and challenges for a synthesized biodiversity knowledge base. Glob. Ecol. Biogeogr. 31, 1242–1260 (2022).
Reimer, L. C. et al. Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res. 50, D741–D746 (2022).
Russell, D. et al. Edaphobase 2.0: advanced international data warehouse for collating and using soil biodiversity datasets. Appl. Soil Ecol. 204, 105710 (2024).
Borsch, T. et al. World flora online: placing taxonomists at the heart of a definitive and comprehensive global resource on the world’s plants. TAXON 69, 1311–1341 (2020).
Hobern, D. et al. Towards a global list of accepted species VI: the Catalogue of Life checklist. Org. Divers. Evol. 21, 677–690 (2021).