Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).
Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2003).
Holzwarth, R., Udem, T. & Hänsch, T. W. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000).
Suh, M. G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).
Niu, R. et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun. 14, 169 (2023).
de Jong, M. H. J., Ganesan, A., Cupertino, A., Gröblacher, S. & Norte, R. A. Mechanical overtone frequency combs. Nat. Commun. 14, 1458 (2023).
Qi, Z., Menyuk, C. R., Gorman, J. J. & Ganesan, A. Existence conditions for phononic frequency combs. Appl. Phys. Lett. 117, 183503 (2020).
Erbe, A. et al. Mechanical mixing in nonlinear nanomechanical resonators. Appl. Phys. Lett. 77, 3102–3104 (2000).
Cao, L. S., Qi, D. X., Peng, R. W., Wang, M. & Schmelcher, P. Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112, 075505 (2014).
Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).
Wu, J. et al. Widely-tunable MEMS phononic frequency combs by multistage bifurcations under a single-tone excitation. J. Microelectromech. Syst. 33, 384–394 (2024).
Ganesan, A., Do, C. & Seshia, A. Excitation of coupled phononic frequency combs via two-mode parametric three-wave mixing. Phys. Rev. B 97, 014302 (2018).
Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via three-mode parametric resonance. Appl. Phys. Lett. 112, 021906 (2018).
Wang, X. et al. Frequency comb in a parametrically modulated micro-resonator. Acta Mech. Sin. 38, 521596 (2022).
Ganesan, A., Do, C. & Seshia, A. Frequency transitions in phononic four-wave mixing. Appl. Phys. Lett. 111, 064101 (2017).
Mouharrar, H. et al. Generation of soliton frequency combs in NEMS. Nano Lett. 24, 10834–10841 (2024).
Czaplewski, D. A. et al. Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121, 244302 (2018).
Bhosale, K. S. & Li, S. Multi-harmonic phononic frequency comb generation in capacitive CMOS-MEMS resonators. Appl. Phys. Lett. 124, 163505 (2024).
Wang, X. et al. Frequency comb in 1:3 internal resonance of coupled micromechanical resonators. Appl. Phys. Lett. 120, 173506 (2022).
Li, Y., Luo, W., Zhao, Z. & Liu, D. Resonant excitation-induced nonlinear mode coupling in a microcantilever resonator. Phys. Rev. Appl. 17, 054015 (2022).
Wu, S. et al. Hybridized frequency combs in multimode cavity electromechanical system. Phys. Rev. Lett. 128, 153901 (2022).
Wang, Y. et al. Optomechanical frequency comb based on multiple nonlinear dynamics. Phys. Rev. Lett. 132, 163603 (2024).
Hu, Y. et al. Generation of optical frequency comb via giant optomechanical oscillation. Phys. Rev. Lett. 127, 134301 (2021).
Ng, R. C. et al. Intermodulation of optical frequency combs in a multimode optomechanical system. Phys. Rev. Res. 5, L032028 (2023).
Navarro-Urrios, D. et al. Nonlinear dynamics and chaos in an optomechanical beam. Nat. Commun. 8, 14965 (2017).
He, Y. et al. Coherent acoustic frequency comb via floquet engineering of optical tweezer phonon lasers. Sci. Adv. 11, eadv9984 (2025).
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).
Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).
Xu, C., Yang, Z. & Lum, G. Z. Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv. Mater. 33, 2100170 (2021).
Xu, A.-N., Li, Y., Li, X., Liu, B. & Liu, Y.-C. Subpicotesla optomechanical magnetometry. Phys. Rev. Lett. 133, 153601 (2024).
Singer, A. et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631–643 (2020).
Thormählen, L. et al. Low-noise inverse magnetoelectric magnetic field sensor. Appl. Phys. Lett. 124, 172402 (2024).
Ma, J., Hu, J., Li, Z. & Nan, C. W. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011).
Luo, B. et al. Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT. Nat. Rev. Electr. Eng. 1, 317–334 (2024).
Li, B., Ou, L., Lei, Y. & Liu, Y. Cavity optomechanical sensing. Nanophotonics 10, 2799–2832 (2021).
Yu, C. et al. Optomechanical magnetometry with a macroscopic resonator. Phys. Rev. Appl. 5, 044007 (2016).
Xu, G.-T. et al. Magnonic frequency comb in the magnomechanical resonator. Phys. Rev. Lett. 131, 243601 (2023).
Xiong, H. Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundam. Res. 3, 8–14 (2023).
Zhai, J., Xing, Z., Dong, S., Li, J. & Viehland, D. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510 (2006).
Meyer, H. G., Stolz, R., Chwala, A. & Schulz, M. SQUID technology for geophysical exploration. Phys. Stat. Sol. 2, 1504–1509 (2005).
Xia, H., Ben-Amar Baranga, A., Hoffman, D. & Romalis, M. V. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006).
Maksymov, I. S., Huy Nguyen, B. Q., Pototsky, A. & Suslov, S. Acoustic, phononic, brillouin light scattering and faraday wave-based frequency combs: physical foundations and applications. Sensors 22, 3921 (2022).
Wu, H. et al. Precise underwater distance measurement by dual acoustic frequency combs. Ann. Phys. 531, 1900283 (2019).
Chen, J. C. et al. Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration. Nat. Mater. 23, 139–146 (2024).
Joy, B., Cai, Y., Bono, D. C. & Sarkar, D. Cell Rover-a miniaturized magnetostrictive antenna for wireless operation inside living cells. Nat. Commun. 13, 5210 (2022).
Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).
Yang, Q. et al. Asymmetric phononic frequency comb in a rhombic micromechanical resonator. Appl. Phys. Lett. 118, 223502 (2021).
Nosek, J. Drive level dependence of the resonant frequency in BAW quartz resonators and his modeling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 823–829 (1999).
Xian, D. et al. Highly magneto-electric-mechanical coupling effect in self-biased magnetoelectric composite induced by laser thermal annealing. Microsyst. Nanoeng. 11, 142 (2025).
Hausch, G. & Török, E. Elastic, magnetoelastic, and thermal properties of some ferromagnetic metallic glasses. Phys. Status Solidi A 50, 159–164 (1978).
Chu, Z. et al. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv. Mater. 29, 1606022 (2017).
Chen, C. et al. Direct-current electrical detection of surface-acoustic-wave-driven ferromagnetic resonance. Adv. Mater. 35, 2302454 (2023).
Wu, J. et al. Self-injection locked and phase offset-free micromechanical frequency combs. Phys. Rev. Lett. 134, 107201 (2025).
Zhao, Z., Li, Y., Zhang, W., Luo, W. & Liu, D. Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air. Microsyst. Nanoeng. 11, 12 (2025).
Postma, H. W. C., Kozinsky, I., Husain, A. & Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86, 223105 (2005).
Kozinsky, I., Postma, H. W. C., Bargatin, I. & Roukes, M. L. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101 (2006).
Lin, Z., Guha Ray, P., Huang, J., Buchmann, P. & Fussenegger, M. Electromagnetic wireless remote control of mammalian transgene expression. Nat. Nanotechnol. 20, 1071–1078 (2025).
Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022).
O’Reilly, M. A. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 385, eadp7206 (2024).
Wang, W. et al. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury. Nat. Mater. 24, 1137–1150 (2025).