• Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article 

    Google Scholar
     

  • Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article 

    Google Scholar
     

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2003).

    Article 

    Google Scholar
     

  • Holzwarth, R., Udem, T. & Hänsch, T. W. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Suh, M. G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, R. et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun. 14, 169 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong, M. H. J., Ganesan, A., Cupertino, A., Gröblacher, S. & Norte, R. A. Mechanical overtone frequency combs. Nat. Commun. 14, 1458 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, Z., Menyuk, C. R., Gorman, J. J. & Ganesan, A. Existence conditions for phononic frequency combs. Appl. Phys. Lett. 117, 183503 (2020).

    Article 

    Google Scholar
     

  • Erbe, A. et al. Mechanical mixing in nonlinear nanomechanical resonators. Appl. Phys. Lett. 77, 3102–3104 (2000).

    Article 

    Google Scholar
     

  • Cao, L. S., Qi, D. X., Peng, R. W., Wang, M. & Schmelcher, P. Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112, 075505 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Widely-tunable MEMS phononic frequency combs by multistage bifurcations under a single-tone excitation. J. Microelectromech. Syst. 33, 384–394 (2024).

    Article 

    Google Scholar
     

  • Ganesan, A., Do, C. & Seshia, A. Excitation of coupled phononic frequency combs via two-mode parametric three-wave mixing. Phys. Rev. B 97, 014302 (2018).

    Article 

    Google Scholar
     

  • Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via three-mode parametric resonance. Appl. Phys. Lett. 112, 021906 (2018).

    Article 

    Google Scholar
     

  • Wang, X. et al. Frequency comb in a parametrically modulated micro-resonator. Acta Mech. Sin. 38, 521596 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ganesan, A., Do, C. & Seshia, A. Frequency transitions in phononic four-wave mixing. Appl. Phys. Lett. 111, 064101 (2017).

    Article 

    Google Scholar
     

  • Mouharrar, H. et al. Generation of soliton frequency combs in NEMS. Nano Lett. 24, 10834–10841 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Czaplewski, D. A. et al. Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121, 244302 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bhosale, K. S. & Li, S. Multi-harmonic phononic frequency comb generation in capacitive CMOS-MEMS resonators. Appl. Phys. Lett. 124, 163505 (2024).

    Article 

    Google Scholar
     

  • Wang, X. et al. Frequency comb in 1:3 internal resonance of coupled micromechanical resonators. Appl. Phys. Lett. 120, 173506 (2022).

    Article 

    Google Scholar
     

  • Li, Y., Luo, W., Zhao, Z. & Liu, D. Resonant excitation-induced nonlinear mode coupling in a microcantilever resonator. Phys. Rev. Appl. 17, 054015 (2022).

    Article 

    Google Scholar
     

  • Wu, S. et al. Hybridized frequency combs in multimode cavity electromechanical system. Phys. Rev. Lett. 128, 153901 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Optomechanical frequency comb based on multiple nonlinear dynamics. Phys. Rev. Lett. 132, 163603 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Y. et al. Generation of optical frequency comb via giant optomechanical oscillation. Phys. Rev. Lett. 127, 134301 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ng, R. C. et al. Intermodulation of optical frequency combs in a multimode optomechanical system. Phys. Rev. Res. 5, L032028 (2023).

    Article 

    Google Scholar
     

  • Navarro-Urrios, D. et al. Nonlinear dynamics and chaos in an optomechanical beam. Nat. Commun. 8, 14965 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Y. et al. Coherent acoustic frequency comb via floquet engineering of optical tweezer phonon lasers. Sci. Adv. 11, eadv9984 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article 

    Google Scholar
     

  • Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C., Yang, Z. & Lum, G. Z. Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv. Mater. 33, 2100170 (2021).

    Article 

    Google Scholar
     

  • Xu, A.-N., Li, Y., Li, X., Liu, B. & Liu, Y.-C. Subpicotesla optomechanical magnetometry. Phys. Rev. Lett. 133, 153601 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Singer, A. et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631–643 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thormählen, L. et al. Low-noise inverse magnetoelectric magnetic field sensor. Appl. Phys. Lett. 124, 172402 (2024).

    Article 

    Google Scholar
     

  • Ma, J., Hu, J., Li, Z. & Nan, C. W. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, B. et al. Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT. Nat. Rev. Electr. Eng. 1, 317–334 (2024).

    Article 

    Google Scholar
     

  • Li, B., Ou, L., Lei, Y. & Liu, Y. Cavity optomechanical sensing. Nanophotonics 10, 2799–2832 (2021).

    Article 

    Google Scholar
     

  • Yu, C. et al. Optomechanical magnetometry with a macroscopic resonator. Phys. Rev. Appl. 5, 044007 (2016).

    Article 

    Google Scholar
     

  • Xu, G.-T. et al. Magnonic frequency comb in the magnomechanical resonator. Phys. Rev. Lett. 131, 243601 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Xiong, H. Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundam. Res. 3, 8–14 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhai, J., Xing, Z., Dong, S., Li, J. & Viehland, D. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510 (2006).

    Article 

    Google Scholar
     

  • Meyer, H. G., Stolz, R., Chwala, A. & Schulz, M. SQUID technology for geophysical exploration. Phys. Stat. Sol. 2, 1504–1509 (2005).


    Google Scholar
     

  • Xia, H., Ben-Amar Baranga, A., Hoffman, D. & Romalis, M. V. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006).

    Article 

    Google Scholar
     

  • Maksymov, I. S., Huy Nguyen, B. Q., Pototsky, A. & Suslov, S. Acoustic, phononic, brillouin light scattering and faraday wave-based frequency combs: physical foundations and applications. Sensors 22, 3921 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Precise underwater distance measurement by dual acoustic frequency combs. Ann. Phys. 531, 1900283 (2019).

    Article 

    Google Scholar
     

  • Chen, J. C. et al. Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration. Nat. Mater. 23, 139–146 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Joy, B., Cai, Y., Bono, D. C. & Sarkar, D. Cell Rover-a miniaturized magnetostrictive antenna for wireless operation inside living cells. Nat. Commun. 13, 5210 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article 

    Google Scholar
     

  • Yang, Q. et al. Asymmetric phononic frequency comb in a rhombic micromechanical resonator. Appl. Phys. Lett. 118, 223502 (2021).

    Article 

    Google Scholar
     

  • Nosek, J. Drive level dependence of the resonant frequency in BAW quartz resonators and his modeling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 823–829 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Xian, D. et al. Highly magneto-electric-mechanical coupling effect in self-biased magnetoelectric composite induced by laser thermal annealing. Microsyst. Nanoeng. 11, 142 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hausch, G. & Török, E. Elastic, magnetoelastic, and thermal properties of some ferromagnetic metallic glasses. Phys. Status Solidi A 50, 159–164 (1978).

    Article 

    Google Scholar
     

  • Chu, Z. et al. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv. Mater. 29, 1606022 (2017).

    Article 

    Google Scholar
     

  • Chen, C. et al. Direct-current electrical detection of surface-acoustic-wave-driven ferromagnetic resonance. Adv. Mater. 35, 2302454 (2023).

    Article 

    Google Scholar
     

  • Wu, J. et al. Self-injection locked and phase offset-free micromechanical frequency combs. Phys. Rev. Lett. 134, 107201 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Z., Li, Y., Zhang, W., Luo, W. & Liu, D. Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air. Microsyst. Nanoeng. 11, 12 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Postma, H. W. C., Kozinsky, I., Husain, A. & Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86, 223105 (2005).

    Article 

    Google Scholar
     

  • Kozinsky, I., Postma, H. W. C., Bargatin, I. & Roukes, M. L. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101 (2006).

    Article 

    Google Scholar
     

  • Lin, Z., Guha Ray, P., Huang, J., Buchmann, P. & Fussenegger, M. Electromagnetic wireless remote control of mammalian transgene expression. Nat. Nanotechnol. 20, 1071–1078 (2025).

  • Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Reilly, M. A. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 385, eadp7206 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury. Nat. Mater. 24, 1137–1150 (2025).

    Article 
    PubMed 

    Google Scholar