• Cichocki, A. et al. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163 (2015).

    Article 

    Google Scholar
     

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    Article 

    Google Scholar
     

  • Choquette, J., Gandhi, W., Giroux, O., Stam, N. & Krashinsky, R. Nvidia a100 tensor core GPU: performance and innovation. IEEE Micro 41, 29–35 (2021).

    Article 

    Google Scholar
     

  • Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photonics 4, 261–263 (2010).

    Article 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 

    Google Scholar
     

  • Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics 17, 723–730 (2023).

    Article 

    Google Scholar
     

  • Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

    Article 

    Google Scholar
     

  • Yang, L., Ji, R., Zhang, L., Ding, J. & Xu, Q. On-chip CMOS-compatible optical signal processor. Opt. Express 20, 13560–13565 (2012).

    Article 

    Google Scholar
     

  • Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

    Article 

    Google Scholar
     

  • Goodman, J. W., Dias, A. & Woody, L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1–3 (1978).

    Article 

    Google Scholar
     

  • Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985).

    Article 

    Google Scholar
     

  • Spall, J., Guo, X., Barrett, T. D. & Lvovsky, A. Fully reconfigurable coherent optical vector–matrix multiplication. Opt. Lett. 45, 5752–5755 (2020).

    Article 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022).

    Article 

    Google Scholar
     

  • Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).

    Article 

    Google Scholar
     

  • Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

    Article 

    Google Scholar
     

  • Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural network. Optica 7, 1812–1819 (2020).

    Article 

    Google Scholar
     

  • Hu, Z. et al. High-throughput multichannel parallelized diffraction convolutional neural network accelerator. Laser Photonics Rev. 16, 2200213 (2022).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article 

    Google Scholar
     

  • Spall, J., Guo, X. & Lvovsky, A. I. Hybrid training of optical neural networks. Optica 9, 803–811 (2022).

    Article 

    Google Scholar
     

  • Moralis-Pegios, M., Giamougiannis, G., Tsakyridis, A., Lazovsky, D. & Pleros, N. Perfect linear optics using silicon photonics. Nat. Commun. 15, 5468 (2024).

    Article 

    Google Scholar
     

  • Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photonics 19, 54–62 (2025).

    Article 

    Google Scholar
     

  • Tsakyridis, A. et al. Photonic neural networks and optics-informed deep learning fundamentals. APL Photonics 9, 011102 (2024).

    Article 

    Google Scholar
     

  • Xu, S. et al. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci. Appl. 10, 221 (2021).

    Article 

    Google Scholar
     

  • Ma, G. et al. Dammann gratings-based truly parallel optical matrix multiplication accelerator. Opt. Lett. 48, 2301–2304 (2023).

    Article 

    Google Scholar
     

  • Ma, G., Yu, J., Zhu, R. & Zhou, C. Optical multi-imaging–casting accelerator for fully parallel universal convolution computing. Photonics Res. 11, 299–312 (2023).

    Article 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 

    Google Scholar
     

  • Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor flow processing using integrated photonic circuits. Nat. Commun. 13, 7970 (2022).

    Article 

    Google Scholar
     

  • Yeh, P. & Chiou, A. E. Optical matrix–vector multiplication through four-wave mixing in photorefractive media. Opt. Lett. 12, 138–140 (1987).

    Article 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 

    Google Scholar
     

  • Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

    Article 

    Google Scholar
     

  • Luan, C., Davis III, R., Chen, Z., Englund, D. & Hamerly, R. Single-shot matrix–matrix multiplication optical tensor processor for deep learning. Preprint at https://arxiv.org/abs/2503.24356 (2025).

  • Jiao, L. et al. AI meets physics: a comprehensive survey. Artif. Intell. Rev. 57, 256 (2024).

    Article 

    Google Scholar
     

  • Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).

    Article 

    Google Scholar
     

  • Latifpour, M. H., Park, B. J., Yamamoto, Y. & Suh, M.-G. Hyperspectral in-memory computing with optical frequency combs and programmable optical memories. Optica 11, 932–939 (2024).

    Article 

    Google Scholar
     

  • Chen, Y. 4f-type optical system for matrix multiplication. Opt. Eng 32, 77–79 (1993).

    Article 

    Google Scholar
     

  • Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    Article 

    Google Scholar
     

  • Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article 

    Google Scholar
     

  • Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).

    Article 

    Google Scholar
     

  • Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

    Article 

    Google Scholar
     

  • Bose Plancks gesetz und lichtquantenhypothese. Z. Phys. 26, 178–181 (1924).

    Article 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (eds Pereira, F. et al.) (Curran Associates, 2012).

  • Vaswani, A. Attention is all you need. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (Curran Associates, 2017).

  • Dosovitskiy, A. An image is worth 16×16 words: Transformers for image recognition at scale. Preprint at https://arxiv.org/abs/2010.11929 (2020).

  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar
     

  • Goodman, J. W. Introduction to Fourier Optics (Roberts and Company, 2005).

  • Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29, 141–142 (2012).

    Article 

    Google Scholar
     

  • Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).

  • Simonyan, K. Very deep convolutional networks for large-scale image recognition. Preprint at https://arxiv.org/abs/1409.1556 (2014).

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Proc. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Part III 234–241 (eds Navab, N. et al.) (Springer, 2015).

  • Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).

    Article 

    Google Scholar
     

  • Spall, J., Guo, X. & Lvovsky, A. I. Training neural networks with end-to-end optical backpropagation. Adv. Photonics 7, 016004–016004 (2025).

    Article 

    Google Scholar
     

  • Zhang, Y. Direct tensor processing with coherent light. figshare https://doi.org/10.6084/m9.figshare.30173512 (2025).