• Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Article 

    Google Scholar
     

  • Bellingham, J., Phillips, W. & Adkins, C. Amorphous indium oxide. Thin Solid Films 195, 23 (1991).

    Article 

    Google Scholar
     

  • Shigesato, Y. in Handbook of Transparent Conductors (eds Ginley, D.S., Hosono, H. & Paine, D. S.) Ch. 5, 149 (Springer, 2010).

  • Buchholz, D. B. et al. The structure and properties of amorphous indium oxide. Chem. Mater. 26, 5401 (2014).

    Article 

    Google Scholar
     

  • Charnas, A. et al. Review—extremely thin amorphous indium oxide transistors. Adv. Mater. 36, 2304044 (2024).

    Article 

    Google Scholar
     

  • Stratt, R. M. & Xu, B.-C. Band structure in a liquid. Phys. Rev. Lett. 62, 1675 (1989).

    Article 
    MathSciNet 

    Google Scholar
     

  • Medvedeva, J. E. et al. Origin of high carrier concentration in amorphous wide-bandgap oxides: role of disorder in defect formation and electron localization in In2O3−x. J. Appl. Phys. 127, 175701 (2020).

    Article 

    Google Scholar
     

  • Lee, Y., Hu, Y., Kim, D., Datta, S. & Cho, K. First-principles mobility prediction for amorphous semiconductors. Phys. Rev. B 105, 085201 (2022).

    Article 

    Google Scholar
     

  • Wolf, L., Novick, A. & Stevanović, V. Modeling glasses from first principles using random structure sampling. J. Appl. Phys. 137, 095101 (2025).

    Article 

    Google Scholar
     

  • Stevanović, V. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016).

    Article 

    Google Scholar
     

  • Faleev, S. V., van Schilfgaarde, M. & Kotani, T. All-electron self-consistent GW approximation: application to Si, MnO, and NiO. Phys. Rev. Lett. 93, 126406 (2004).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 

    Google Scholar
     

  • Utsuno, F. et al. Structural study of amorphous In2O3 film by grazing incidence X-ray scattering (GIXS) with synchrotron radiation. Thin Solid Films 496, 95 (2006).

    Article 

    Google Scholar
     

  • Aliano, A., Catellani, A. & Cicero, G. Characterization of amorphous In2O3: an ab initio molecular dynamics study. Appl. Phys. Lett. 99, 211913 (2011).

    Article 

    Google Scholar
     

  • Eguchi, T., Inoue, H., Masuno, A., Kita, K. & Utsuno, F. Oxygen close-packed structure in amorphous indium zinc oxide thin films. Inorg. Chem. 49, 8298 (2010).

    Article 

    Google Scholar
     

  • Öfner, H., Shapira, Y. & Netzer, F. P. Evolution of the In oxide/Si(111) interface: analysis by electron spectroscopies. J. Appl. Phys. 76, 1196 (1994).

    Article 

    Google Scholar
     

  • Nakazawa, H. et al. The electronic properties of amorphous and crystallized In2O3 films. J. Appl. Phys. 100, 093706 (2006).

    Article 

    Google Scholar
     

  • Scherer, V. et al. Transport and angular resolved photoemission measurements of the electronic properties of In2O3 bulk single crystals. Appl. Phys. Lett. 100, 212108 (2012).

    Article 

    Google Scholar
     

  • Buchholz, D. B., Zeng, L., Bedzyk, M. J. & Chang, R. P. Differences between amorphous indium oxide thin films. Progress Nat. Sci. Mater. Int. 23, 475 (2013).

    Article 

    Google Scholar
     

  • Ziman, J. M. Localization of electrons in ordered and disordered systems II. Bound bands. J. Phys. C 2, 1230 (1969).

    Article 

    Google Scholar
     

  • Abou-Chacra, R. & Thouless, D. J. Self-consistent theory of localization. II. Localization near the band edges. J. Phys. C 7, 65 (1974).

    Article 

    Google Scholar
     

  • Nichols, C. S. & Winer, K. Localization of band-edge states in periodic models of a-Si. Phys. Rev. B 38, 9850 (1988).

    Article 

    Google Scholar
     

  • Caskey, C. M. et al. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. J. Chem. Phys. 144, 144201 (2016).

    Article 

    Google Scholar
     

  • Stocks, G. M. & Winter, H. in The Electronic Structure of Complex Systems (eds Phariseau, P. & Temmerman, W. M.) Ch. 8, 463 (Plenum, 1985).

  • Johnson, D. D., Nicholson, D. M., Pinski, F. J., Gyorffy, B. L. & Stocks, G. M. Density-functional theory for random alloys: total energy within the coherent-potential approximation. Phys. Rev. Lett. 56, 2088 (1986).

    Article 

    Google Scholar
     

  • Laad, M. S. & Craco, L. Cluster coherent potential approximation for the electronic structure of disordered alloys. J. Phys. Condens. Matter 17, 4765 (2005).

    Article 

    Google Scholar
     

  • Brinzari, V. et al. Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide. Surf. Sci. 601, 5585 (2007).

    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 

    Google Scholar
     

  • Marezio, M. Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallogr. 20, 723 (1966).

    Article 

    Google Scholar
     

  • Skone, J. H., Govoni, M. & Galli, G. Self-consistent hybrid functional for condensed systems. Phys. Rev. B 89, 195112 (2014).

    Article 

    Google Scholar
     

  • Cunningham, B., Grüning, M., Pashov, D. & van Schilfgaarde, M. QSGW: quasiparticle self-consistent GW with ladder diagrams in W. Phys. Rev. B 108, 165104 (2023).

    Article 

    Google Scholar
     

  • Popescu, V. & Zunger, A. Effective band structure of random alloys. Phys. Rev. Lett. 104, 236403 (2010).

    Article 

    Google Scholar