• Xing, Y. et al. Monitoring the formation of infinite-layer transition metal oxides through in situ atomic-resolution electron microscopy. Nat. Chem. 17, 66–73 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. A correlated ferromagnetic polar metal by design. Nat. Mater. 23, 912–919 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kang, K. T. et al. A room-temperature ferroelectric ferromagnet in a 1D tetrahedral chain network. Adv. Mater. 31, 1808104 (2019).

    Article 

    Google Scholar
     

  • Kim, W. J. et al. Geometric frustration of Jahn–Teller order in the infinite-layer lattice. Nature 615, 237–243 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jeen, H. et al. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ. Adv. Mater. 25, 3651–3656 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Emori, S. et al. Coexistence of low damping and strong magnetoelastic coupling in epitaxial spinel ferrite thin films. Adv. Mater. 29, 1701130 (2017).

    Article 

    Google Scholar
     

  • Burdett, J. K., Price, G. D. & Price, S. L. Role of the crystal-field theory in determining the structures of spinels. J. Am. Chem. Soc. 104, 92–95 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Brownmillerite Ca2Co2O5: synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem. Mater. 26, 7172–7182 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Theoretical investigation of magnetic anisotropy at the La0.5Sr0.5MnO3/LaCoO2.5 interface. Phys. Rev. B 100, 144413 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yamasaki, Y. et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 207204 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hemberger, J. et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434, 364–367 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sandemann, J. R. et al. Direct visualization of magnetic correlations in frustrated spinel ZnFe2O4. Adv. Mater. 35, 2207152 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Y. et al. Atomic-scale operando observation of oxygen diffusion during topotactic phase transition of a perovskite oxide. Matter 5, 3009–3022 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khare, A. et al. Topotactic metal–insulator transition in epitaxial SrFeOx thin films. Adv. Mater. 29, 1606566 (2017).

    Article 

    Google Scholar
     

  • Li, J. et al. Topotactic phase transformations by concerted dual-ion migration of B-site cation and oxygen in multivalent cobaltite La–Sr–Co–Ox films. Nano Energy 78, 105215 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, H. S. et al. Molecularly thin, two-dimensional all-organic perovskites. Science 384, 60–66 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Aubrey, M. L. et al. Directed assembly of layered perovskite heterostructures as single crystals. Nature 597, 355–359 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun, J. et al. Emerging two-dimensional organic semiconductor-incorporated perovskites─a fascinating family of hybrid electronic materials. J. Am. Chem. Soc. 145, 20694–20715 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Morteza Najarian, A. et al. Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gilley, I. W. et al. Combining organic cations of different sizes grants improved control over perovskitoid dimensionality and bandgap. J. Am. Chem. Soc. 147, 7777–7787 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Abdelwahab, I. et al. Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity. Science 385, 311–317 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, K. Y. et al. Intrinsic magnetic order of chemically exfoliated 2D Ruddlesden–Popper organic–inorganic halide perovskite ultrathin films. Small 16, 2005445 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, K. M., Smith, R. T. & Gamelin, D. R. Anion exchange and lateral heterostructure formation in ferromagnetic PEA2Cr(Cl,Br)4 two-dimensional perovskites. J. Am. Chem. Soc. 146, 29159–29168 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nakayama, Y., Nishihara, S., Inoue, K., Suzuki, T. & Kurmoo, M. Coupling of magnetic and elastic domains in the organic–inorganic layered perovskite-like (C6H5C2H4NH3)2FeIICl4 crystal. Angew. Chem. Int. Ed. 56, 9367–9370 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, H. et al. Chiral multiferroicity in two-dimensional hybrid organic–inorganic perovskites. Nat. Commun. 15, 5556 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gu, H. et al. Phase-pure two-dimensional layered perovskite thin films. Nat. Rev. Mater. 8, 533–551 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hao, J. et al. Direct detection of circularly polarized light using chiral copper chloride–carbon nanotube heterostructures. ACS Nano 15, 7608–7617 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mao, L., Chen, J., Vishnoi, P. & Cheetham, A. K. The renaissance of functional hybrid transition-metal halides. Acc. Mater. Res. 3, 439–448 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Daub, M., Natalukha, D. & Hillebrecht, H. Crystal structures of the perovskite-related system A/Rb/Cu(II)/Br (A = BA, Gu, PEA, 5-AVA, H2en) with winners, losers and compromises—versatility from 0D to 3D on different levels. Eur. J. Inorg. Chem. 2022, e202200136 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. (C6H5CH2NH3)2CuBr4: a lead-free, highly stable two-dimensional perovskite for solar cell applications. ACS Appl. Energy Mater. 1, 2709–2716 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhan, X. et al. Enhanced structural stability and pressure-induced photoconductivity in two-dimensional hybrid perovskite (C6H5CH2NH3)2CuBr4. Angew. Chem. Int. Ed. 61, e202205491 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harper, K. C., Bess, E. N. & Sigman, M. S. Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. Nat. Chem. 4, 366–374 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brethomé, A. V., Fletcher, S. P. & Paton, R. S. Conformational effects on physical-organic descriptors: the case of sterimol steric parameters. ACS Catal. 9, 2313–2323 (2019).

    Article 

    Google Scholar
     

  • Howard, J. R., Bhakare, A., Akhtar, Z., Wolf, C. & Anslyn, E. V. Data-driven prediction of circular dichroism-based calibration curves for the rapid screening of chiral primary amine enantiomeric excess values. J. Am. Chem. Soc. 144, 17269–17276 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ai, Y., Lv, H.-P., Wang, Z.-X., Liao, W.-Q. & Xiong, R.-G. H/F substitution for advanced molecular ferroelectrics. Trends Chem. 3, 1088–1099 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H.-Y., Zhang, H.-Y., Chen, X.-G. & Xiong, R.-G. Molecular design principles for ferroelectrics: ferroelectrochemistry. J. Am. Chem. Soc. 142, 15205–15218 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun, B. et al. Intrinsic ferromagnetic semiconductors with high saturation magnetization from hybrid perovskites. Adv. Mater. 35, 2303945 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Chen, Z., Xue, J., Wang, Z. & Lu, H. Magnetic hybrid transition metal halides. Mater. Chem. Front. 8, 210–227 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H.-Y. et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, C.-F. et al. Centimeter-sized single crystals of two-dimensional hybrid iodide double perovskite (4,4-Difluoropiperidinium)4AgBiI8 for high-temperature ferroelectricity and efficient X-Ray detection. Adv. Funct. Mater. 31, 2009457 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Comstock, A. H. et al. Hybrid magnonics in hybrid perovskite antiferromagnets. Nat. Commun. 14, 1834 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wong, R. J. H., Willett, R. D. & Drumheller, J. E. An EPR study of interlayer exchange coupling in the quasi-two-dimensional salts, (CnH2n+1NH3)2CuCl4, with n = 1, 2, and 3. J. Chem. Phys. 74, 6018–6021 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Taniguchi, K. et al. Magneto-electric directional anisotropy in polar soft ferromagnets of two-dimensional organic–inorganic hybrid perovskites. Angew. Chem. Int. Ed. 60, 14350–14354 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, Q. et al. Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics. Nat. Commun. 15, 3029 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun, M.-E. et al. Chirality-dependent structural transformation in chiral 2D perovskites under high pressure. J. Am. Chem. Soc. 145, 8908–8916 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stepakova, L. V. et al. Vibrational spectroscopic and force field studies of copper(II) chloride and bromide compounds, and crystal structure of KCuBr3. J. Raman Spectrosc. 39, 16–31 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Jaffe, A. et al. High compression-induced conductivity in a layered Cu–Br perovskite. Angew. Chem. Int. Ed. 59, 4017–4022 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+ U framework. Phys. Rev. B 73, 195107 (2006).

    Article 

    Google Scholar
     

  • Tsirlin, A. A., Abakumov, A. M., Ritter, C. & Rosner, H. (CuCl)LaTa2O7 and quantum phase transition in the (CuX)LaM2O7 family (X= Cl, Br; M= Nb, Ta). Phys. Rev. B 86, 064440 (2012).

    Article 

    Google Scholar
     

  • Zheng, H. et al. Strain-driven solid–solid crystal conversion in chiral hybrid pseudo-perovskites with paramagnetic-to-ferromagnetic transition. J. Am. Chem. Soc. 145, 3569–3576 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar