• Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Nape, I., Sephton, B., Ornelas, P., Moodley, C. & Forbes, A. Quantum structured light in high dimensions. APL Photon. 8, 051101 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Entanglement-based quantum information technology: a tutorial. Adv. Opt. Photon. 16, 60–162 (2024).

    Article 

    Google Scholar
     

  • Kaur, T., Peace, D. & Romero, J. On-chip high-dimensional entangled photon sources. J. Opt. 27, 023001 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cozzolino, D., Da Lio, B., Bacco, D. & Oxenløwe, L. K. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2, 1900038 (2019).

    Article 

    Google Scholar
     

  • Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, M., Jiang, W., Guo, L., Li, J. & Forbes, A. Metrology with a twist: probing and sensing with vortex light. Light Sci. Appl. 14, 4 (2025).

    Article 
    ADS 

    Google Scholar
     

  • McLaren, M., Mhlanga, T., Padgett, M., Roux, F. & Forbes, A. Self-healing of quantum entanglement after an obstruction. Nat. Commun. 5, 3248 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lib, O. & Bromberg, Y. Spatially entangled airy photons. Opt. Lett. 45, 1399–1402 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gomes, R., Salles, A., Toscano, F., Ribeiro, P. S. & Walborn, S. Observation of a nonlocal optical vortex. Phys. Rev. Lett. 103, 033602 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photon. 18, 258–266 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Topological rejection of noise by quantum skyrmions. Nat. Commun. 16, 2934 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Schiano, C. et al. Engineering quantum states from a spatially structured quantum eraser. Sci. Adv. 10, eadm9278 (2024).

    Article 

    Google Scholar
     

  • Yoshikawa, J.-I. et al. Invited article: generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1, 060801 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yu, H. et al. Quantum key distribution implemented with d-level time-bin entangled photons. Nat. Commun. 16, 171 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Chapman, J. C., Lim, C. C. & Kwiat, P. G. Hyperentangled time-bin and polarization quantum key distribution. Phys. Rev. Appl. 18, 044027 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sit, A. et al. Ultrafast all-optical modulation of spatially structured photons. Preprint at https://arxiv.org/abs/2504.05464 (2025).

  • Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S. et al. Deterministic all-optical quantum teleportation of four degrees of freedom. Phys. Rev. Lett. 132, 100801 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kopf, L., Barros, R. & Fickler, R. Correlating space, wavelength, and polarization of light: spatiospectral vector beams. ACS Photon. 11, 241–246 (2023).

    Article 

    Google Scholar
     

  • Graffitti, F. et al. Hyperentanglement in structured quantum light. Phys. Rev. Res. 2, 043350 (2020).

    Article 

    Google Scholar
     

  • Wang, J. et al. Spatiotemporal single-photon airy bullets. Phys. Rev. Lett. 132, 143601 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Mahmudlu, H. et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photon. 17, 518–524 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kan, Y. et al. High-dimensional spin-orbital single-photon sources. Sci. Adv. 10, eadq6298 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, H. et al. Integrated preparation and manipulation of high-dimensional flying structured photons. eLight 4, 10 (2024).

    Article 

    Google Scholar
     

  • Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).

    Article 

    Google Scholar
     

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    Article 

    Google Scholar
     

  • Nape, I. et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat. Commun. 12, 1–8 (2021).

    Article 

    Google Scholar
     

  • Rambach, M. et al. Robust and efficient high-dimensional quantum state tomography. Phys. Rev. Lett. 126, 100402 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nat. Commun. 10, 1–7 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zia, D., Dehghan, N., D’Errico, A., Sciarrino, F. & Karimi, E. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photon. 17, 1009–1016 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Courme, B., Cameron, P., Faccio, D., Gigan, S. & Defienne, H. Manipulation and certification of high-dimensional entanglement through a scattering medium. PRX Quantum 4, 010308 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gao, X. et al. Full spatial characterization of entangled structured photons. Phys. Rev. Lett. 132, 063802 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Efficient measurement of orbital angular momentum entanglement using convolutional neural network. Laser Photon. Rev. 19, 2400720 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Widomski, A., Ogrodnik, M. & Karpiński, M. Efficient detection of multidimensional single-photon time-bin superpositions. Optica 11, 926–931 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174–1 (2022).

    Article 

    Google Scholar
     

  • Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics—the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ansari, V. et al. Tomography and purification of the temporal-mode structure of quantum light. Phys. Rev. Lett. 120, 213601 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Serino, L., Eigner, C., Brecht, B. & Silberhorn, C. Programmable time-frequency mode-sorting of single photons with a multi-output quantum pulse gate. Opt. Express 33, 5577–5586 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Serino, L., Rambach, M., Brecht, B., Romero, J. & Silberhorn, C. Self-guided tomography of time-frequency qudits. Quantum Sci. Technol. 10, 025024 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Weiss, T. F. & Peruzzo, A. Nonlinear domain engineering for quantum technologies. Appl. Phys. Rev. 12, 011318 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Rozenberg, E. et al. Inverse design of spontaneous parametric downconversion for generation of high-dimensional qudits. Optica 9, 602–615 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kysela, J., Erhard, M., Hochrainer, A., Krenn, M. & Zeilinger, A. Path identity as a source of high-dimensional entanglement. Proc. Natl Acad. Sci. USA 117, 26118–26122 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yesharim, O., Hurvitz, I., Foley-Comer, J. & Arie, A. Bulk nonlinear metamaterials for generation of quantum light. Appl. Phys. Rev. 12, 011323 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Sephton, B. et al. Quantum transport of high-dimensional spatial information with a nonlinear detector. Nat. Commun. 14, 8243 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Qiu, X., Guo, H. & Chen, L. Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion. Nat. Commun. 14, 8244 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Akin, J., Zhao, Y., Kwiat, P. G., Goldschmidt, E. A. & Fang, K. Faithful quantum teleportation via a nanophotonic nonlinear bell state analyzer. Phys. Rev. Lett. 134, 160802 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Brandt, F., Hiekkamäki, M., Bouchard, F., Huber, M. & Fickler, R. High-dimensional quantum gates using full-field spatial modes of photons. Optica 7, 98–107 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dahl, D. S., Plöschner, M., Fontaine, N. K., Romero, J. & Carpenter, J. Programable high-dimensional quantum gates via mplc. In Frontiers in Optics https://doi.org/10.1364/fio.2024.fm5c.5 (Optica, 2024).

  • Goel, S. et al. Simultaneously sorting overlapping quantum states of light. Phys. Rev. Lett. 130, 143602 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Goel, S. et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys. 20, 232–239 (2024).

    Article 

    Google Scholar
     

  • Lib, O. & Bromberg, Y. Resource-efficient photonic quantum computation with high-dimensional cluster states. Nat. Photon. 18, 1218–1224 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bouchard, F. et al. Programmable photonic quantum circuits with ultrafast time-bin encoding. Phys. Rev. Lett. 133, 090601 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Monika, M. et al. Quantum state processing through controllable synthetic temporal photonic lattices. Nat. Photon. 19, 95–100 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Imany, P. et al. High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5, 59 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Folge, P., Stefszky, M., Brecht, B. & Silberhorn, C. A framework for fully programmable frequency-encoded quantum networks harnessing multioutput quantum pulse gates. PRX Quantum 5, 040329 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Montaut, N. et al. Progress in integrated and fiber optics for time-bin based quantum information processing. Adv. Opt. Technol. 14, 1560084 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Huang, J. et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 19, 471–478 (2025).

  • Wang, C. et al. Non-Hermitian optics and photonics: from classical to quantum. Adv. Opt. Photon. 15, 442–523 (2023).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. High-dimensional quantum key distribution by a spin-orbit microlaser. Phys. Rev. 15, 011024 (2025).

    Article 

    Google Scholar
     

  • Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).

    Article 

    Google Scholar
     

  • Cozzolino, D. et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photon. 1, 046005 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zahidy, M. et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber. Nat. Commun. 15, 1651 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 6, eaay0837 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X., Fu, J., Liu, S., Wei, Y. & Jing, J. Self-healing of multipartite entanglement in optical quantum networks. Optica 9, 663–669 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nicolas, A., et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ye, Y.-H. et al. Long-lived memory for orbital angular momentum quantum states. Phys. Rev. Lett. 129, 193601 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kim, B. et al. Qudit-based variational quantum eigensolver using photonic orbital angular momentum states. Sci. Adv. 10, eado3472 (2024).

    Article 

    Google Scholar
     

  • Koni, M., Bezuidenhout, H. & Nape, I. Emulating quantum computing with optical matrix multiplication. APL Photon. 9, 106120 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Weng, H.-C. & Chuu, C.-S. Implementation of Sshor’s algorithm with a single photon in 32 dimensions. Phys. Rev. Appl. 22, 034003 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, C.-X., Zhou, X., Guo, G.-C. & Zhou, Z.-W. Sawtooth lattice in a photonic orbital-angular-momentum simulation system. Phys. Rev. A 108, 043507 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cardano, F. et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Esposito, C. et al. Quantum walks of two correlated photons in a 2D synthetic lattice. npj Quantum Inf. 8, 34 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vernière, C. & Defienne, H. Hiding images in quantum correlations. Phys. Rev. Lett. 133, 093601 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, S., Rarity, J. & Padgett, M. Transmission of quantum-secured images. Sci. Rep. 14, 11579 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).

    Article 

    Google Scholar
     

  • Nothlawala, F., Moodley, C., Gounden, N., Nape, I. & Forbes, A. Quantum ghost imaging by sparse spatial mode reconstruction. Adv. Quantum Technol. 8, 2400577 (2025).

    Article 

    Google Scholar
     

  • Grenapin, F. et al. Superresolution enhancement in biphoton spatial-mode demultiplexing. Phys. Rev. Appl. 20, 024077 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kong, L.-J., Sun, Y., Zhang, F., Zhang, J. & Zhang, X. High-dimensional entanglement-enabled holography. Phys. Rev. Lett. 130, 053602 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    Article 

    Google Scholar
     

  • Kong, L.-J., Zhang, J., Zhang, Z. & Zhang, X. Quantum holographic microscopy. Laser Photon. Rev. 19, 2401909 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).

    Article 
    ADS 

    Google Scholar
     

  • D’ambrosio, V. et al. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4, 2432 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Yesharim, O., Tshuva, G. & Arie, A. Quantum enhanced mechanical rotation sensing using wavefront photonic gears. APL Photon. 9, 106116 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Hiekkamäki, M., Bouchard, F. & Fickler, R. Photonic angular super-resolution using twisted N00N states. Phys. Rev. Lett. 127, 263601 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Eriksson, M. et al. Sensing rotations with multiplane light conversion. Phys. Rev. Appl. 20, 024052 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tischler, N. et al. Quantum optical rotatory dispersion. Sci. Adv. 2, e1601306 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hong, L., Cao, X., Chen, Y. & Chen, L. Hong–Ou–Mandel interference of spin–orbit hybrid entangled photons. APL Photon. 8, 126103 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X., Cao, Q. & Zhan, Q. Spatiotemporal optical wavepackets: from concepts to applications. Photon. Insights 3, R08 (2024).

    Article 

    Google Scholar
     

  • Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article 
    ADS 

    Google Scholar
     

  • de Mello Koch, R., Lu, B.-Q., Ornelas, P., Nape, I. & Forbes, A. Quantum skyrmions in general quantum channels. APL Quantum 2, 026126 (2025).

    Article 

    Google Scholar
     

  • Yan, Q. et al. Quantum topological photonics. Adv. Opt. Mater. 9, 2001739 (2021).

    Article 

    Google Scholar
     

  • Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Ultracompact single-photon sources of linearly polarized vortex beams. Adv. Mater. 36, 2304495 (2024).

    Article 

    Google Scholar
     

  • Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article 
    ADS 

    Google Scholar