Boström, K. & Felbinger, T. Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002).
Lloyd, S. Power of entanglement in quantum communication. Phys. Rev. Lett. 90, 167902 (2003).
Pennacchietti, M. et al. Oscillating photonic Bell state from a semiconductor quantum dot for quantum key distribution. Commun. Phys. 7, 62 (2024).
Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes ssing quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).
Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Quantum-assisted telescope arrays. Phys. Rev. A 100, 022316 (2019).
Brown, M. R. et al. Interferometric imaging using shared quantum entanglement. Phys. Rev. Lett. 131, 210801 (2023).
Jozsa, R. & Linden, N. On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. Ser. A: Math., Phys. Eng. Sci. 459, 2011–2032 (2003).
Nakhl, A. C., Quella, T. & Usman, M. Calibrating the role of entanglement in variational quantum circuits. Phys. Rev. A 109, 032413 (2024).
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614 (2021).
Akhtar, M. et al. A high-fidelity quantum matter-link between ion-trap microchip modules. Nat. Commun. 14, 531 (2023).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).
Ramelow, S. et al. Highly efficient heralding of entangled single photons. Opt. Express 21, 6707 (2013).
Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014).
Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).
Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 608, 677 (2022).
Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).
Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573 (2024).
Ferreira, V. S., Kim, G., Butler, A., Pichler, H. & Painter, O. Deterministic generation of multidimensional photonic cluster states with a single quantum emitter. Nat. Phys. 20, 865 (2024).
Olislager, L. et al. Frequency-bin entangled photons. Phys. Rev. A 82, 013804 (2010).
Zhang, Z. et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf. 7, 123 (2021).
Sabattoli, F. A. et al. A silicon source of frequency-bin entangled photons. Opt. Lett. 47, 6201 (2022).
Clementi, M. et al. Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun. 14, 176 (2023).
Ansari, V., Donohue, J. M., Brecht, B. & Silberhorn, C. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica 5, 534 (2018).
Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011).
Schneider, B. H. et al. Observation of broadband entanglement in microwave radiation from a single time-varying boundary condition. Phys. Rev. Lett. 124, 140503 (2020).
Gasparinetti, S. et al. Correlations and entanglement of microwave photons emitted in a cascade decay. Phys. Rev. Lett. 119, 140504 (2017).
Peugeot, A. et al. Generating two continuous entangled microwave beams using a DC-biased Josephson junction. Phys. Rev. X 11, 031008 (2021).
Esposito, M. et al. Observation of two-mode squeezing in a traveling wave parametric amplifier. Phys. Rev. Lett. 128, 153603 (2022).
Perelshtein, M. R. et al. Broadband continuous-variable entanglement generation using a Kerr-free Josephson metamaterial. Phys. Rev. Appl. 18, 024063 (2022).
Jolin, S. W. et al. Multipartite entanglement in a microwave frequency comb. Phys. Rev. Lett. 130, 120601 (2023).
Kurpiers, P. et al. Quantum communication with time-bin encoded microwave photons. Phys. Rev. Appl. 12, 044067 (2019).
Ilves, J. et al. On-demand generation and characterization of a microwave time-bin qubit. npj Quantum Inf. 6, 34 (2020).
Kimble, H. & Mandel, L. Theory of resonance fluorescence. Phys. Rev. A 13, 2123 (1976).
Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840 (2010).
Ulhaq, A. et al. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nat. Photonics 6, 238 (2012).
Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015).
Peiris, M., Konthasinghe, K. & Muller, A. Franson interference generated by a two-level system. Phys. Rev. Lett. 118, 030501 (2017).
López Carreño, J. C., Del Valle, E. & Laussy, F. P. Photon correlations from the mollow triplet. Laser Photonics Rev. 11, 1700090 (2017).
Zubizarreta Casalengua, E., López Carreño, J. C., Laussy, F. P. & del Valle, E. Conventional and unconventional photon statistics. Laser Photonics Rev. 14, 1900279 (2020).
López Carreño, J. C., Bermúdez Feijoo, S. & Stobińska, M. Entanglement in resonance fluorescence. npj Nanophotonics 1, 3 (2024).
Strandberg, I., Lu, Y., Quijandría, F. & Johansson, G. Numerical study of Wigner negativity in one-dimensional steady-state resonance fluorescence. Phys. Rev. A 100, 063808 (2019).
Quijandría, F., Strandberg, I. & Johansson, G. Steady-state generation of Wigner-negative states in one-dimensional resonance fluorescence. Phys. Rev. Lett. 121, 263603 (2018).
Lu, Y. et al. Propagating Wigner-negative states generated from the steady-state emission of a superconducting qubit. Phys. Rev. Lett. 126, 253602 (2021).
Plenio, M. B. Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).
Salari, V. et al. Cryogenic bridging via propagating microwave quantum teleportation. AVS Quantum Sci. 6, 042001 (2024).
Zhang, H., Alsaedi, A., Hayat, T. & Deng, F.-G. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED. Ann. Phys. 391, 112 (2018).
Kurochkin, Y., Prasad, A. S. & Lvovsky, A. I. Distillation of the two-mode squeezed state. Phys. Rev. Lett. 112, 070402 (2014).
Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).
Loudon, R. The Quantum Theory of Light, 3rd ed., Oxford Science Publications (Oxford University Press, Oxford, 2000).
Gardiner, C. W. and Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, 2004).
Eichler, C. et al. Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011).
Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors. Phys. Rev. A 86, 032106 (2012).
Lu, Y. et al. Quantum efficiency, purity and stability of a tunable, narrowband microwave single-photon source. npj Quantum Inf. 7, 140 (2021).
Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969 (1969).
Nehra, R. et al. Generalized overlap quantum state tomography. Phys. Rev. Res. 2, 042002 (2020).
Strandberg, I. Simple, reliable, and noise-resilient continuous-variable quantum state tomography with convex optimization. Phys. Rev. Appl. 18, 044041 (2022).
Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994).
Shabani, A. et al. Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011).
Rodionov, A. V. et al. Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144504 (2014).
Sánchez Muñoz, C., Del Valle, E., Tejedor, C. & Laussy, F. P. Violation of classical inequalities by photon frequency filtering. Phys. Rev. A 90, 052111 (2014).
Ashby, J. et al. Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science. Opt. Express 28, 38376 (2020).
Chiriano, F. et al. Hyper-entanglement between pulse modes and frequency bins. Opt. Express 31, 35131 (2023).
Bao, Z. et al. On-demand storage and retrieval of microwave photons using a superconducting multiresonator quantum memory. Phys. Rev. Lett. 127, 010503 (2021).
Matanin, A. R. et al. Toward highly efficient multimode superconducting quantum memory. Phys. Rev. Appl. 19, 034011 (2023).
Eckstein, A., Brecht, B. & Silberhorn, C. A quantum pulse gate based on spectrally engineered sum frequency generation. Opt. Express 19, 13770 (2011).
Harder, G., Ansari, V., Bartley, T. J., Brecht, B. & Silberhorn, C. Harnessing temporal modes for multi-photon quantum information processing based on integrated optics. Philos. Trans. R. Soc. A 375, 20160244 (2017).
Xu, S., Shen, H. Z. & Yi, X. X. Demultiplexing of photonic temporal modes by a linear system. Phys. Rev. A 97, 033841 (2018).
Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).
Wang, H. et al. Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011).
Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. Nat. Phys. 9, 345 (2013).
Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).
Kannan, B. et al. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. Sci. Adv. 6, eabb8780 (2020).
Forn-Diaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39 (2017).
Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Spectrum of resonance fluorescence from a single trapped ion. Phys. Rev. A 48, 2169 (1993).
Bühner, V. & Tamm, C. Resonance fluorescence spectrum of a trapped ion undergoing quantum jumps. Phys. Rev. A 61, 061801 (2000).
Bienert, M., Torres, J. M., Zippilli, S. & Morigi, G. Resonance fluorescence of a cold atom in a high-finesse resonator. Phys. Rev. A 76, 013410 (2007).
Higbie, J. M. et al. Multiphoton-excited fluorescence of silicon-vacancy color centers in diamond. Phys. Rev. Appl. 7, 054010 (2017).
Chen, D. et al. Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond. Nano Lett. 22, 6306 (2022).
Kumar, S. et al. Fluorescence enhancement of a single germanium vacancy center in a nanodiamond by a plasmonic Bragg cavity. J. Chem. Phys. 154, 044303 (2021).
Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).
Makhonin, M. N. et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett. 14, 6997 (2014).
Al-Khuzheyri, R. et al. Resonance fluorescence from a telecom-wavelength quantum dot. Appl. Phys. Lett. 109, 163104 (2016).
Nawrath, C. et al. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Appl. Phys. Lett. 118, 244002 (2021).
Strandberg, I., Johansson, G. & Quijandría, F. Wigner negativity in the steady-state output of a Kerr parametric oscillator. Phys. Rev. Res. 3, 023041 (2021).
Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502 (2018).
Mehrabad, M. J. et al. Chiral topological photonics with an embedded quantum emitter. Optica 7, 1690 (2020).
Vega, C., Porras, D. & González-Tudela, A. Topological multimode waveguide QED. Phys. Rev. Res. 5, 023031 (2023).
Mlynek, J. A., Abdumalikov, A. A., Eichler, C. & Wallraff, A. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186 (2014).
Breuer, H. P. and Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, 2007).
Carmichael, H. An Open Systems Approach to Quantum Optics, Lecture Notes in Physics Monographs, Vol. 18 (Springer Berlin Heidelberg, 1993).
García Ripoll, J. J. Quantum Information and Quantum Optics with Superconducting Circuits, 1st ed. (Cambridge University Press, 2022).
Kiilerich, A. H. & Mølmer, K. Input-output theory with quantum pulses. Phys. Rev. Lett. 123, 123604 (2019).
Kiilerich, A. H. & Mølmer, K. Quantum interactions with pulses of radiation. Phys. Rev. A 102, 023717 (2020).
Nurdin, H. I., James, M. R., and Yamamoto, N. Perfect single device absorber of arbitrary traveling single photon fields with a tunable coupling parameter: A QSDE approach, in 2016 IEEE 55th Conference on Decision and Control (CDC) (IEEE, 2016) pp. 2513–2518.
Gough, J. E. & Zhang, G. Generating nonclassical quantum input field states with modulating filters. EPJ Quantum Technol. 2, 15 (2015).
López Carreño, J. C., Del Valle, E. & Laussy, F. P. Frequency-resolved Monte Carlo. Sci. Rep. 8, 6975 (2018).
Johansson, J., Nation, P. & Nori, F. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012).
Johansson, J., Nation, P. & Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013).
Lambert, N. et al. Qutip 5: The quantum toolbox in python, arXiv preprint arXiv:2412.04705 (2024).
Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
Plenio, M. & Virmani, S. An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007).
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
da Silva, M. P., Bozyigit, D., Wallraff, A. & Blais, A. Schemes for the observation of photon correlation functions in circuit QED with linear detectors. Phys. Rev. A 82, 043804 (2010).
Eichler, C. Doctoral Thesis, ETH Zurich (2013).
Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261 (2020).
Diamond, S. & Boyd, S. CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17, 2909 (2016).