• Boström, K. & Felbinger, T. Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Lloyd, S. Power of entanglement in quantum communication. Phys. Rev. Lett. 90, 167902 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pennacchietti, M. et al. Oscillating photonic Bell state from a semiconductor quantum dot for quantum key distribution. Commun. Phys. 7, 62 (2024).

    Article 

    Google Scholar
     

  • Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes ssing quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Quantum-assisted telescope arrays. Phys. Rev. A 100, 022316 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Brown, M. R. et al. Interferometric imaging using shared quantum entanglement. Phys. Rev. Lett. 131, 210801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jozsa, R. & Linden, N. On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. Ser. A: Math., Phys. Eng. Sci. 459, 2011–2032 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nakhl, A. C., Quella, T. & Usman, M. Calibrating the role of entanglement in variational quantum circuits. Phys. Rev. A 109, 032413 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Akhtar, M. et al. A high-fidelity quantum matter-link between ion-trap microchip modules. Nat. Commun. 14, 531 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Ramelow, S. et al. Highly efficient heralding of entangled single photons. Opt. Express 21, 6707 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 608, 677 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ferreira, V. S., Kim, G., Butler, A., Pichler, H. & Painter, O. Deterministic generation of multidimensional photonic cluster states with a single quantum emitter. Nat. Phys. 20, 865 (2024).

    Article 

    Google Scholar
     

  • Olislager, L. et al. Frequency-bin entangled photons. Phys. Rev. A 82, 013804 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf. 7, 123 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Sabattoli, F. A. et al. A silicon source of frequency-bin entangled photons. Opt. Lett. 47, 6201 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Clementi, M. et al. Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun. 14, 176 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ansari, V., Donohue, J. M., Brecht, B. & Silberhorn, C. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica 5, 534 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, B. H. et al. Observation of broadband entanglement in microwave radiation from a single time-varying boundary condition. Phys. Rev. Lett. 124, 140503 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gasparinetti, S. et al. Correlations and entanglement of microwave photons emitted in a cascade decay. Phys. Rev. Lett. 119, 140504 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Peugeot, A. et al. Generating two continuous entangled microwave beams using a DC-biased Josephson junction. Phys. Rev. X 11, 031008 (2021).


    Google Scholar
     

  • Esposito, M. et al. Observation of two-mode squeezing in a traveling wave parametric amplifier. Phys. Rev. Lett. 128, 153603 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Perelshtein, M. R. et al. Broadband continuous-variable entanglement generation using a Kerr-free Josephson metamaterial. Phys. Rev. Appl. 18, 024063 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jolin, S. W. et al. Multipartite entanglement in a microwave frequency comb. Phys. Rev. Lett. 130, 120601 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kurpiers, P. et al. Quantum communication with time-bin encoded microwave photons. Phys. Rev. Appl. 12, 044067 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ilves, J. et al. On-demand generation and characterization of a microwave time-bin qubit. npj Quantum Inf. 6, 34 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kimble, H. & Mandel, L. Theory of resonance fluorescence. Phys. Rev. A 13, 2123 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ulhaq, A. et al. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nat. Photonics 6, 238 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Peiris, M., Konthasinghe, K. & Muller, A. Franson interference generated by a two-level system. Phys. Rev. Lett. 118, 030501 (2017).

    Article 
    ADS 

    Google Scholar
     

  • López Carreño, J. C., Del Valle, E. & Laussy, F. P. Photon correlations from the mollow triplet. Laser Photonics Rev. 11, 1700090 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zubizarreta Casalengua, E., López Carreño, J. C., Laussy, F. P. & del Valle, E. Conventional and unconventional photon statistics. Laser Photonics Rev. 14, 1900279 (2020).

    Article 
    ADS 

    Google Scholar
     

  • López Carreño, J. C., Bermúdez Feijoo, S. & Stobińska, M. Entanglement in resonance fluorescence. npj Nanophotonics 1, 3 (2024).

    Article 

    Google Scholar
     

  • Strandberg, I., Lu, Y., Quijandría, F. & Johansson, G. Numerical study of Wigner negativity in one-dimensional steady-state resonance fluorescence. Phys. Rev. A 100, 063808 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Quijandría, F., Strandberg, I. & Johansson, G. Steady-state generation of Wigner-negative states in one-dimensional resonance fluorescence. Phys. Rev. Lett. 121, 263603 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Y. et al. Propagating Wigner-negative states generated from the steady-state emission of a superconducting qubit. Phys. Rev. Lett. 126, 253602 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Plenio, M. B. Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Salari, V. et al. Cryogenic bridging via propagating microwave quantum teleportation. AVS Quantum Sci. 6, 042001 (2024).

    Article 

    Google Scholar
     

  • Zhang, H., Alsaedi, A., Hayat, T. & Deng, F.-G. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED. Ann. Phys. 391, 112 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kurochkin, Y., Prasad, A. S. & Lvovsky, A. I. Distillation of the two-mode squeezed state. Phys. Rev. Lett. 112, 070402 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Loudon, R. The Quantum Theory of Light, 3rd ed., Oxford Science Publications (Oxford University Press, Oxford, 2000).

  • Gardiner, C. W. and Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, 2004).

  • Eichler, C. et al. Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors. Phys. Rev. A 86, 032106 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Y. et al. Quantum efficiency, purity and stability of a tunable, narrowband microwave single-photon source. npj Quantum Inf. 7, 140 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Nehra, R. et al. Generalized overlap quantum state tomography. Phys. Rev. Res. 2, 042002 (2020).

    Article 

    Google Scholar
     

  • Strandberg, I. Simple, reliable, and noise-resilient continuous-variable quantum state tomography with convex optimization. Phys. Rev. Appl. 18, 044041 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shabani, A. et al. Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rodionov, A. V. et al. Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144504 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sánchez Muñoz, C., Del Valle, E., Tejedor, C. & Laussy, F. P. Violation of classical inequalities by photon frequency filtering. Phys. Rev. A 90, 052111 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ashby, J. et al. Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science. Opt. Express 28, 38376 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chiriano, F. et al. Hyper-entanglement between pulse modes and frequency bins. Opt. Express 31, 35131 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bao, Z. et al. On-demand storage and retrieval of microwave photons using a superconducting multiresonator quantum memory. Phys. Rev. Lett. 127, 010503 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Matanin, A. R. et al. Toward highly efficient multimode superconducting quantum memory. Phys. Rev. Appl. 19, 034011 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Eckstein, A., Brecht, B. & Silberhorn, C. A quantum pulse gate based on spectrally engineered sum frequency generation. Opt. Express 19, 13770 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Harder, G., Ansari, V., Bartley, T. J., Brecht, B. & Silberhorn, C. Harnessing temporal modes for multi-photon quantum information processing based on integrated optics. Philos. Trans. R. Soc. A 375, 20160244 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, S., Shen, H. Z. & Yi, X. X. Demultiplexing of photonic temporal modes by a linear system. Phys. Rev. A 97, 033841 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. Nat. Phys. 9, 345 (2013).

    Article 

    Google Scholar
     

  • Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).


    Google Scholar
     

  • Kannan, B. et al. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. Sci. Adv. 6, eabb8780 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Forn-Diaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39 (2017).

    Article 

    Google Scholar
     

  • Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Spectrum of resonance fluorescence from a single trapped ion. Phys. Rev. A 48, 2169 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Bühner, V. & Tamm, C. Resonance fluorescence spectrum of a trapped ion undergoing quantum jumps. Phys. Rev. A 61, 061801 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Bienert, M., Torres, J. M., Zippilli, S. & Morigi, G. Resonance fluorescence of a cold atom in a high-finesse resonator. Phys. Rev. A 76, 013410 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Higbie, J. M. et al. Multiphoton-excited fluorescence of silicon-vacancy color centers in diamond. Phys. Rev. Appl. 7, 054010 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, D. et al. Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond. Nano Lett. 22, 6306 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, S. et al. Fluorescence enhancement of a single germanium vacancy center in a nanodiamond by a plasmonic Bragg cavity. J. Chem. Phys. 154, 044303 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Makhonin, M. N. et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett. 14, 6997 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Al-Khuzheyri, R. et al. Resonance fluorescence from a telecom-wavelength quantum dot. Appl. Phys. Lett. 109, 163104 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nawrath, C. et al. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Appl. Phys. Lett. 118, 244002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Strandberg, I., Johansson, G. & Quijandría, F. Wigner negativity in the steady-state output of a Kerr parametric oscillator. Phys. Rev. Res. 3, 023041 (2021).

    Article 

    Google Scholar
     

  • Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mehrabad, M. J. et al. Chiral topological photonics with an embedded quantum emitter. Optica 7, 1690 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Vega, C., Porras, D. & González-Tudela, A. Topological multimode waveguide QED. Phys. Rev. Res. 5, 023031 (2023).

    Article 

    Google Scholar
     

  • Mlynek, J. A., Abdumalikov, A. A., Eichler, C. & Wallraff, A. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Breuer, H. P. and Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, 2007).

  • Carmichael, H. An Open Systems Approach to Quantum Optics, Lecture Notes in Physics Monographs, Vol. 18 (Springer Berlin Heidelberg, 1993).

  • García Ripoll, J. J. Quantum Information and Quantum Optics with Superconducting Circuits, 1st ed. (Cambridge University Press, 2022).

  • Kiilerich, A. H. & Mølmer, K. Input-output theory with quantum pulses. Phys. Rev. Lett. 123, 123604 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kiilerich, A. H. & Mølmer, K. Quantum interactions with pulses of radiation. Phys. Rev. A 102, 023717 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nurdin, H. I., James, M. R., and Yamamoto, N. Perfect single device absorber of arbitrary traveling single photon fields with a tunable coupling parameter: A QSDE approach, in 2016 IEEE 55th Conference on Decision and Control (CDC) (IEEE, 2016) pp. 2513–2518.

  • Gough, J. E. & Zhang, G. Generating nonclassical quantum input field states with modulating filters. EPJ Quantum Technol. 2, 15 (2015).

    Article 

    Google Scholar
     

  • López Carreño, J. C., Del Valle, E. & Laussy, F. P. Frequency-resolved Monte Carlo. Sci. Rep. 8, 6975 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Johansson, J., Nation, P. & Nori, F. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Johansson, J., Nation, P. & Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lambert, N. et al. Qutip 5: The quantum toolbox in python, arXiv preprint arXiv:2412.04705 (2024).

  • Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Plenio, M. & Virmani, S. An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007).

    MathSciNet 

    Google Scholar
     

  • Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • da Silva, M. P., Bozyigit, D., Wallraff, A. & Blais, A. Schemes for the observation of photon correlation functions in circuit QED with linear detectors. Phys. Rev. A 82, 043804 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Eichler, C. Doctoral Thesis, ETH Zurich (2013).

  • Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261 (2020).

    Article 

    Google Scholar
     

  • Diamond, S. & Boyd, S. CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17, 2909 (2016).

    MathSciNet 

    Google Scholar