Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).
Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 35, 2303139 (2023).
Wang, F. et al. Two-step perovskite solar cells with >25% efficiency: unveiling the hidden bottom surface of perovskite layer. Adv. Mater. 36, 2401476 (2024).
Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).
Chen, S. et al. Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. 7, eabb2412 (2021).
Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).
Xiao, Y., Yang, X., Zhu, R. & Snaith, H. J. Unlocking interfaces in photovoltaics. Science 384, 846–848 (2024).
Shi, P. J. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).
Huang, Z. et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).
Gao, Y. et al. Controlled nucleation and oriented crystallization of methylammonium-free perovskites via in situ generated 2D perovskite phases. Adv. Mater. 36, 2405921 (2024).
Azmi, R. et al. Double-side 2-dimensional/3-dimensional heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).
Li, H. Y. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).
Wang, Y. et al. Highly oriented FAPbI3 via 2D Ruddlesden Popper perovskite template growth. Adv. Energy Mater. 14, 2401721 (2024).
Li, Q. et al. Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells. Nat. Energy 9, 1506–1516 (2024).
Song, S. et al. Molecular engineering of organic spacer cations for efficient and stable formamidinium perovskite solar cell. Adv. Energy Mater. 10, 2001759 (2020).
Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).
Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).
Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).
Wang, J. et al. Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 4, 100308 (2024).
Zhou, T. et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, 2200705 (2022).
Zhang, C. et al. Work function tuning of a weak adhesion homojunction for stable perovskite solar cells. Joule 8, 1394–1411 (2024).
Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).
Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).
Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).
Meng, R. et al. Solvent bath annealing-induced liquid phase Ostwald ripening enabling efficient and stable perovskite solar cells. J. Mater. Chem. A 11, 4780–4788 (2023).
Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).
Liu, C. et al. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633, 359–364 (2024).
Zhang, K. et al. Highly efficient and stable FAPbI3 perovskite solar cells and modules based on exposure of the (011) facet. Nano-Micro Lett. 15, 138 (2023).
Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).
Jennings, W. B., Farrell, B. M. & Malone, J. F. Attractive intramolecular edge-to-face aromatic interactions in flexible organic molecules. Acc. Chem. Res. 34, 885–894 (2001).
Bai, M. et al. A donor-acceptor-donor structured organic conductor with S···S chalcogen bonding. Cryst. Growth Des. 14, 459–466 (2014).
Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).
Shao, J.-Y. et al. Recent progress in perovskite solar cells: material science. Sci. China Chem. 66, 10–64 (2022).
Liu, Y., Guo, J., Zhou, H., Li, C. & Guo, X. Correlating π-π stacking of aromatic diammoniums with stability and dimensional reduction of Dion-Jacobson 2D perovskites. J. Am. Chem. Soc. 146, 8198–8205 (2024).
Lee, J. W. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018).
Zhou, T. et al. Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, 1901242 (2019).
Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).
Hoffman, J. M. et al. Film formation mechanisms in mixed-dimensional 2D/3D halide perovskite films revealed by in situ grazing-incidence wide-angle X-ray scattering. Chem 8, 1067–1082 (2022).
Quintero-Bermudez, R. et al. Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites. J. Am. Chem. Soc. 141, 13459–13467 (2019).
Yu, D. et al. Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin. Nat. Commun. 13, 6229 (2022).
Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).
Julien, A., Puel, J.-B. & Guillemoles, J.-F. Distinction of mechanisms causing experimental degradation of perovskite solar cells by simulating associated pathways. Energy Environ. Sci. 16, 190–200 (2023).
Zhao, B. X. et al. A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy Environ. Sci. 13, 4334–4343 (2020).
Lai, H. et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15. J. Am. Chem. Soc. 140, 11639–11646 (2018).