van Dyck, R. S., Schwinberg, P. B. & Dehmelt, H. G. New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26–29 (1987).
Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).
Fan, X., Myers, T. G., Sukra, B. A. D. & Gabrielse, G. Measurement of the electron magnetic moment. Phys. Rev. Lett. 130, 071801 (2023).
Heisenberg, W. & Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936).
Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).
Fedotov, A. et al. Advances in QED with intense background fields. Phys. Rep. 1010, 1–138 (2023).
Beiersdorfer, P., Chen, H., Thorn, D. B. & Träbert, E. Measurement of the two-loop Lamb shift in lithium-like U89+. Phys. Rev. Lett. 95, 233003 (2005).
Loetzsch, R. et al. Testing quantum electrodynamics in extreme fields using helium-like uranium. Nature 625, 673–678 (2024).
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Abi, B. et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021).
Aguillard, D. P. et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm. Phys. Rev. Lett. 131, 161802 (2023).
King, S. A. et al. An optical atomic clock based on a highly charged ion. Nature 611, 43–47 (2022).
Kozlov, M. G., Safronova, M. S., Crespo López-Urrutia, J. R. & Schmidt, P. O. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90, 045005 (2018).
Shabaev, V. M. et al. QED effects in heavy few-electron ions. Int. J. Mass Spec. 251, 109–118 (2006).
Gumberidze, A. et al. Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogen-like uranium. Phys. Rev. Lett. 94, 223001 (2005).
Morgner, J. et al. Stringent test of QED with hydrogen-like tin. Nature 622, 53–57 (2023).
Klaft, I. et al. Precision laser spectroscopy of the ground state hyperfine splitting of hydrogen-like 209Bi82+. Phys. Rev. Lett. 73, 2425–2427 (1994).
Seelig, P. et al. Ground state hyperfine splitting of hydrogen-like 207Pb81+ by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824–4827 (1998).
Ullmann, J. et al. An improved value for the hyperfine splitting of hydrogen-like 209Bi82+. J. Phys. B 48, 144022 (2015).
Beier, T. The gj factor of a bound electron and the hyperfine structure splitting in hydrogen-like ions. Phys. Rep. 339, 79–213 (2000).
Lochmann, M. et al. Observation of the hyperfine transition in lithium-like bismuth 209Bi80+: towards a test of QED in strong magnetic fields. Phys. Rev. A 90, 030501 (2014).
Crespo López-Urrutia, J. R. et al. Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+. Phys. Rev. A 57, 879–887 (1998).
Crespo López-Urrutia, J. R., Beiersdorfer, P., Savin, D. W. & Widmann, K. Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogen-like 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826–829 (1996).
Beiersdorfer, P. et al. Hyperfine structure of hydrogen-like thallium isotopes. Phys. Rev. A 64, 032506 (2001).
Bohr, A. & Weisskopf, V. F. The influence of nuclear structure on the hyperfine structure of heavy elements. Phys. Rev. 77, 94–98 (1950).
Zherebtsov, O. M. & Shabaev, V. M. Higher order interelectronic-interaction corrections to the ground-state hyperfine splitting in lithium-like ions. Can. J. Phys. 78, 701–709 (2000).
Sen’kov, R. A. & Dmitriev, V. F. Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 706, 351–364 (2002).
Schmidt, S. et al. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED. Phys. Lett. B 779, 324–330 (2018).
Hellwig, H. et al. Measurement of the unperturbed hydrogen hyperfine transition frequency. IEEE Transact. Instrum. Meas. 19, 200–209 (1970).
Skripnikov, L. V. Nuclear magnetization distribution effect in molecules: Ra+ and RaF hyperfine structure. J. Chem. Phys. 153, 114114 (2020).
Skripnikov, L. V. & Barzakh, A. E. Reexamination of nuclear magnetic dipole and electric quadrupole moments of polonium isotopes. Phys. Rev. C 109, 024315 (2024).
Roberts, B. M., Ranclaud, P. G. & Ginges, J. S. M. Bohr-Weisskopf effect: from hydrogen-like-ion experiments to heavy-atom calculations of the hyperfine structure. Phys. Rev. A 105, 052802 (2022).
Ullmann, J. et al. High precision hyperfine measurements in bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017).
Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).
Shabaev, V. M. et al. Ground-state g factor of highly charged 229Th ions: an access to the M1 transition probability between the isomeric and ground nuclear states. Phys. Rev. Lett. 128, 043001 (2022).
Franzke, B. The heavy ion storage and cooler ring project ESR at GSI. Nucl. Instr. Meth. Phys. Res. B 24-25, 18–25 (1987).
Brandau, C. et al. Isotope shifts in dielectronic recombination: from stable to in-flight-produced nuclei. J. Phys. Conf. Ser. 194, 012023 (2009).
Nolden, F. et al. A fast and sensitive resonant Schottky pick-up for heavy ion storage rings. Nucl. Instr. Meth. Phys. Res. A 659, 69–77 (2011).
Litvinov, Y. A. et al. Nuclear physics experiments with ion storage rings. Nucl. Instr. Meth. Phys. Res. B 317, 603–616 (2013).
Skripnikov, L. V. et al. New nuclear magnetic moment of 209Bi: resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018).
Antušek, A. et al. Nuclear magnetic dipole moment of 209Bi from NMR experiments. Phys. Rev. A 98, 052509 (2018).
Shabaev, V. M., Artemyev, A. N., Yerokhin, V. A., Zherebtsov, O. M. & Soff, G. Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959–3962 (2001).
Miyagi, T. et al. Impact of two-body currents on magnetic dipole moments of nuclei. Phys. Rev. Lett. 132, 232503 (2024).
Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).
Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).
Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).
Horst, M. Laser Spectroscopy of 208Bi82+ and Commissioning of the HITRAP Cooling Trap. Phd thesis, TU Darmstadt (2023).
Heyde, K. The Nuclear Shell Model (Springer, 1994).
Fella, V. et al. Magnetic moment of 207Pb and the hyperfine splitting of 207Pb81+. Phys. Rev. Res. 2, 013368 (2020).
Bosch, F., Litvinov, Y. A. & Stöhlker, T. Nuclear physics with unstable ions at storage rings. Progr. Part. Nucl. Phys. 73, 84–140 (2013).
Poth, H. Electron cooling—theory, experiment, application. Phys. Rep. 196, 135–297 (1990).
Sánchez, R. et al. Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth. J. Phys. B 50, 085004 (2017).
Franzke, B. in CAS—CERN Accelerator School: Fourth Advanced Accelerator Physics Course (ed. Turner, S.) 100–119 (CERN, 1992).
Volotka, A. V. et al. Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108, 073001 (2012).
Micke, P. et al. Coherent laser spectroscopy of highly charged ions using quantum logic. Nature 578, 60–65 (2020).