• van Dyck, R. S., Schwinberg, P. B. & Dehmelt, H. G. New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26–29 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Fan, X., Myers, T. G., Sukra, B. A. D. & Gabrielse, G. Measurement of the electron magnetic moment. Phys. Rev. Lett. 130, 071801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Heisenberg, W. & Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936).

    Article 
    ADS 

    Google Scholar
     

  • Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Fedotov, A. et al. Advances in QED with intense background fields. Phys. Rep. 1010, 1–138 (2023).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Beiersdorfer, P., Chen, H., Thorn, D. B. & Träbert, E. Measurement of the two-loop Lamb shift in lithium-like U89+. Phys. Rev. Lett. 95, 233003 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Loetzsch, R. et al. Testing quantum electrodynamics in extreme fields using helium-like uranium. Nature 625, 673–678 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Abi, B. et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Aguillard, D. P. et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm. Phys. Rev. Lett. 131, 161802 (2023).

    Article 
    ADS 

    Google Scholar
     

  • King, S. A. et al. An optical atomic clock based on a highly charged ion. Nature 611, 43–47 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kozlov, M. G., Safronova, M. S., Crespo López-Urrutia, J. R. & Schmidt, P. O. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90, 045005 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shabaev, V. M. et al. QED effects in heavy few-electron ions. Int. J. Mass Spec. 251, 109–118 (2006).

    Article 

    Google Scholar
     

  • Gumberidze, A. et al. Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogen-like uranium. Phys. Rev. Lett. 94, 223001 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Morgner, J. et al. Stringent test of QED with hydrogen-like tin. Nature 622, 53–57 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Klaft, I. et al. Precision laser spectroscopy of the ground state hyperfine splitting of hydrogen-like 209Bi82+. Phys. Rev. Lett. 73, 2425–2427 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Seelig, P. et al. Ground state hyperfine splitting of hydrogen-like 207Pb81+ by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824–4827 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Ullmann, J. et al. An improved value for the hyperfine splitting of hydrogen-like 209Bi82+. J. Phys. B 48, 144022 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Beier, T. The gj factor of a bound electron and the hyperfine structure splitting in hydrogen-like ions. Phys. Rep. 339, 79–213 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Lochmann, M. et al. Observation of the hyperfine transition in lithium-like bismuth 209Bi80+: towards a test of QED in strong magnetic fields. Phys. Rev. A 90, 030501 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Crespo López-Urrutia, J. R. et al. Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+. Phys. Rev. A 57, 879–887 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Crespo López-Urrutia, J. R., Beiersdorfer, P., Savin, D. W. & Widmann, K. Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogen-like 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826–829 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Beiersdorfer, P. et al. Hyperfine structure of hydrogen-like thallium isotopes. Phys. Rev. A 64, 032506 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Bohr, A. & Weisskopf, V. F. The influence of nuclear structure on the hyperfine structure of heavy elements. Phys. Rev. 77, 94–98 (1950).

    Article 
    ADS 

    Google Scholar
     

  • Zherebtsov, O. M. & Shabaev, V. M. Higher order interelectronic-interaction corrections to the ground-state hyperfine splitting in lithium-like ions. Can. J. Phys. 78, 701–709 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Sen’kov, R. A. & Dmitriev, V. F. Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 706, 351–364 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, S. et al. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED. Phys. Lett. B 779, 324–330 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hellwig, H. et al. Measurement of the unperturbed hydrogen hyperfine transition frequency. IEEE Transact. Instrum. Meas. 19, 200–209 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Skripnikov, L. V. Nuclear magnetization distribution effect in molecules: Ra+ and RaF hyperfine structure. J. Chem. Phys. 153, 114114 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Skripnikov, L. V. & Barzakh, A. E. Reexamination of nuclear magnetic dipole and electric quadrupole moments of polonium isotopes. Phys. Rev. C 109, 024315 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Roberts, B. M., Ranclaud, P. G. & Ginges, J. S. M. Bohr-Weisskopf effect: from hydrogen-like-ion experiments to heavy-atom calculations of the hyperfine structure. Phys. Rev. A 105, 052802 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ullmann, J. et al. High precision hyperfine measurements in bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Shabaev, V. M. et al. Ground-state g factor of highly charged 229Th ions: an access to the M1 transition probability between the isomeric and ground nuclear states. Phys. Rev. Lett. 128, 043001 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Franzke, B. The heavy ion storage and cooler ring project ESR at GSI. Nucl. Instr. Meth. Phys. Res. B 24-25, 18–25 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Brandau, C. et al. Isotope shifts in dielectronic recombination: from stable to in-flight-produced nuclei. J. Phys. Conf. Ser. 194, 012023 (2009).

    Article 

    Google Scholar
     

  • Nolden, F. et al. A fast and sensitive resonant Schottky pick-up for heavy ion storage rings. Nucl. Instr. Meth. Phys. Res. A 659, 69–77 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Litvinov, Y. A. et al. Nuclear physics experiments with ion storage rings. Nucl. Instr. Meth. Phys. Res. B 317, 603–616 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Skripnikov, L. V. et al. New nuclear magnetic moment of 209Bi: resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Antušek, A. et al. Nuclear magnetic dipole moment of 209Bi from NMR experiments. Phys. Rev. A 98, 052509 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shabaev, V. M., Artemyev, A. N., Yerokhin, V. A., Zherebtsov, O. M. & Soff, G. Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959–3962 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Miyagi, T. et al. Impact of two-body currents on magnetic dipole moments of nuclei. Phys. Rev. Lett. 132, 232503 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article 

    Google Scholar
     

  • Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Horst, M. Laser Spectroscopy of 208Bi82+ and Commissioning of the HITRAP Cooling Trap. Phd thesis, TU Darmstadt (2023).

  • Heyde, K. The Nuclear Shell Model (Springer, 1994).

  • Fella, V. et al. Magnetic moment of 207Pb and the hyperfine splitting of 207Pb81+. Phys. Rev. Res. 2, 013368 (2020).

    Article 

    Google Scholar
     

  • Bosch, F., Litvinov, Y. A. & Stöhlker, T. Nuclear physics with unstable ions at storage rings. Progr. Part. Nucl. Phys. 73, 84–140 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Poth, H. Electron cooling—theory, experiment, application. Phys. Rep. 196, 135–297 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Sánchez, R. et al. Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth. J. Phys. B 50, 085004 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Franzke, B. in CAS—CERN Accelerator School: Fourth Advanced Accelerator Physics Course (ed. Turner, S.) 100–119 (CERN, 1992).

  • Volotka, A. V. et al. Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108, 073001 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Micke, P. et al. Coherent laser spectroscopy of highly charged ions using quantum logic. Nature 578, 60–65 (2020).

    Article 
    ADS 

    Google Scholar