Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).
Kohno, M., Starykh, O. A. & Balents, L. Spinons and triplons in spatially anisotropic frustrated antiferromagnets. Nat. Phys. 3, 790 (2007).
Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).
Ma, J. et al. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Phys. Rev. Lett. 116, 087201 (2016).
Dai, P.-L. et al. Spinon Fermi surface spin liquid in a triangular lattice antiferromagnet NaYbSe2. Phys. Rev. X 11, 021044 (2021).
Ortiz, B. R. et al. Quantum disordered ground state in the triangular-lattice magnet NaRuO2. Nat. Phys. 19, 943 (2023).
Weihong, Z., McKenzie, R. H. & Singh, R. R. P. Phase diagram for a class of spin-\(\frac{1}{2}\) Heisenberg models interpolating between the square-lattice, the triangular-lattice, and the linear-chain limits. Phys. Rev. B 59, 14367 (1999).
Chung, C.-H., Voelker, K. & Kim, Y. B. Statistics of spinons in the spin-liquid phase of Cs2CuCl4. Phys. Rev. B 68, 094412 (2003).
Yunoki, S. & Sorella, S. Resonating valence bond wave function for the two-dimensional fractional spin liquid. Phys. Rev. Lett. 92, 157003 (2004).
Zheng, W., Singh, R. R. P., McKenzie, R. H. & Coldea, R. Temperature dependence of the magnetic susceptibility for triangular-lattice antiferromagnets with spatially anisotropic exchange constants. Phys. Rev. B 71, 134422 (2005).
Zheng, W., Fjærestad, J. O., Singh, R. R. P., McKenzie, R. H. & Coldea, R. Anomalous excitation spectra of frustrated quantum antiferromagnets. Phys. Rev. Lett. 96, 057201 (2006).
Yunoki, S. & Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 74, 014408 (2006).
Weng, M. Q., Sheng, D. N., Weng, Z. Y. & Bursill, R. J. Spin-liquid phase in an anisotropic triangular-lattice Heisenberg model: exact diagonalization and density-matrix renormalization group calculations. Phys. Rev. B 74, 012407 (2006).
Starykh, O. A. & Balents, L. Ordering in spatially anisotropic triangular antiferromagnets. Phys. Rev. Lett. 98, 077205 (2007).
Hayashi, Y. & Ogata, M. Possibility of gapless spin liquid state by one-dimensionalization. J. Phys. Soc. Jpn. 76, 053705 (2007).
Heidarian, D., Sorella, S. & Becca, F. Spin-\(\frac{1}{2}\) Heisenberg model on the anisotropic triangular lattice: from magnetism to a one-dimensional spin liquid. Phys. Rev. B 80, 012404 (2009).
Starykh, O. A., Katsura, H. & Balents, L. Extreme sensitivity of a frustrated quantum magnet: Cs2CuCl4. Phys. Rev. B 82, 014421 (2010).
Reuther, J. & Thomale, R. Functional renormalization group for the anisotropic triangular antiferromagnet. Phys. Rev. B 83, 024402 (2011).
Harada, K. Numerical study of incommensurability of the spiral state on spin-\(\frac{1}{2}\) spatially anisotropic triangular antiferromagnets using entanglement renormalization. Phys. Rev. B 86, 184421 (2012).
Starykh, O. A., Jin, W. & Chubukov, A. V. Phases of a triangular-lattice antiferromagnet near saturation. Phys. Rev. Lett. 113, 087204 (2014).
Ghorbani, E., Tocchio, L. F. & Becca, F. Variational wave functions for the \(S=\frac{1}{2}\) Heisenberg model on the anisotropic triangular lattice: spin liquids and spiral orders. Phys. Rev. B 93, 085111 (2016).
Morita, K. Isothermal and adiabatic magnetization processes of the spin-\(\frac{1}{2}\) Heisenberg model on an anisotropic triangular lattice. Phys. Rev. B 105, 064428 (2022).
Yu, Y., Li, S., Isk, S. & Gul, E. Magnetic phases of the anisotropic triangular lattice Hubbard model. Phys. Rev. B 107, 075106 (2023).
Bernu, B., Lecheminant, P., Lhuillier, C. & Pierre, L. Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. B 50, 10048 (1994).
White, S. R. & Chernyshev, A. L. Neél order in square and triangular lattice Heisenberg models. Phys. Rev. Lett. 99, 127004 (2007).
Endoh, Y., Shirane, G., Birgeneau, R. J., Richards, P. M. & Holt, S. L. Dynamics of an \(S=\frac{1}{2}\), one-dimensional Heisenberg antiferromagnet. Phys. Rev. Lett. 32, 170 (1974).
Tennant, D. A., Perring, T. G., Cowley, R. A. & Nagler, S. E. Unbound spinons in the S = 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70, 4003 (1993).
Coldea, R. et al. Neutron scattering study of the magnetic structure of Cs2CuCl4. J. Phys. Condens. Matter 8, 7473 (1996).
Coldea, R., Tennant, D. A., Tsvelik, A. M. & Tylczynski, Z. Experimental realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 86, 1335 (2001).
Coldea, R. et al. Direct measurement of the spin hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4. Phys. Rev. Lett. 88, 137203 (2002).
Coldea, R., Tennant, D. A. & Tylczynski, Z. Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs2CuCl4 observed by neutron scattering. Phys. Rev. B 68, 134424 (2003).
Radu, T. et al. Bose-Einstein condensation of magnons in Cs2CuCl4. Phys. Rev. Lett. 95, 127202 (2005).
Tokiwa, Y. et al. Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnet Cs2CuCl4. Phys. Rev. B 73, 134414 (2006).
Povarov, K. Y., Smirnov, A. I., Starykh, O. A., Petrov, S. V. & Shapiro, A. Y. Modes of magnetic resonance in the spin-liquid phase of Cs2CuCl4. Phys. Rev. Lett. 107, 037204 (2011).
Smirnov, A. I., Povarov, K. Y., Petrov, S. V. & Shapiro, A. Y. Magnetic resonance in the ordered phases of the two-dimensional frustrated quantum magnet Cs2CuCl4. Phys. Rev. B 85, 184423 (2012).
Zvyagin, S. A. et al. Direct determination of exchange parameters in Cs2CuBr4 and Cs2CuCl4: high-field electron-spin-resonance studies. Phys. Rev. Lett. 112, 077206 (2014).
Zvyagin, S. A. et al. Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4. Nat. Commun. 10, 1064 (2019).
Schulze, E. et al. Evidence of one-dimensional magnetic heat transport in the triangular-lattice antiferromagnet Cs2CuCl4. Phys. Rev. Res. 1, 032022(R) (2019).
Ono, T. et al. Magnetization plateau in the frustrated quantum spin system Cs2CuBr4. Phys. Rev. B 67, 104431 (2003).
Ono, T. et al. Magnetization plateaux of the S = 1/2 two-dimensional frustrated antiferromagnet Cs2CuBr4. J. Phys. Condens. Matter 16, S773 (2004).
Tsujii, H. et al. Thermodynamics of the up-up-down phase of the \(S=\frac{1}{2}\) triangular-lattice antiferromagnet Cs2CuBr4. Phys. Rev. B 76, 060406(R) (2007).
Fortune, N. A. et al. Cascade of magnetic-field-induced quantum phase transitions in a Spin-1/2 triangular-lattice antiferromagnet. Phys. Rev. Lett. 102, 257201 (2009).
Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).
Kandpal, H. C., Opahle, I., Zhang, Y.-Z., Jeschke, H. O. & Valentí, R. Revision of model parameters for κ-type charge transfer salts: an ab initio study. Phys. Rev. Lett. 103, 067004 (2009).
Koretsune, T. & Hotta, C. Evaluating model parameters of the κ- and β’-type Mott insulating organic solids. Phys. Rev. B 89, 045102 (2014).
Yoshida, Y. et al. Spin-disordered quantum phases in a quasi-one-dimensional triangular lattice. Nat. Phys. 11, 679 (2015).
Komatsu, T., Matsukawa, N., Inoue, T. & Saito, G. Realization of superconductivity at ambient pressure by band-filling control in κ-(BEDT-TTF)2Cu2(CN)3. J. Phys. Soc. Jpn. 65, 1340 (1996).
Kato, R., Kashimura, Y., Aonuma, S., Hanasaki, N. & Tajima, H. A new molecular superconductor \({\beta }^{{\prime} }\)-Et2Me2P[Pd(dmit)2]2 (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate). Solid State Commun. 105, 561 (1998).
Shimizu, Y. et al. Magnetic field driven transition between valence bond solid and antiferromagnetic order in a distorted triangular lattice. Phys. Rev. Res. 3, 023145 (2021).
Powell, B. J., Kenny, E. P. & Merino, J. Dynamical reduction of the dimensionality of exchange interactions and the “spin-liquid” phase of κ–(BEDT–TTF)2X. Phys. Rev. Lett. 119, 087204 (2017).
Hirai, D. et al. “Visible” 5d orbital states in a pleochroic oxychloride. J. Am. Chem. Soc. 139, 10784 (2017).
Hirai, D., Nawa, K., Kawamura, M., Misawa, T. & Hiroi, Z. One-dimensionalization by geometrical frustration in the anisotropic triangular lattice of the 5d quantum antiferromagnet Ca3ReO5Cl2. J. Phys. Soc. Jpn. 88, 044708 (2019).
Hirai, D., Yajima, T., Nawa, K., Kawamura, M. & Hiroi, Z. Anisotropic triangular lattice realized in rhenium oxychlorides A3ReO5Cl2 (A = Ba. Sr). Inorg. Chem. 59, 10025 (2020).
Nawa, K. et al. Bound spinon excitations in the spin-\(\frac{1}{2}\) anisotropic triangular antiferromagnet Ca3ReO5Cl2. Phys. Rev. Res. 2, 043121 (2020).
Zvyagin, S. A. et al. Dimensional reduction and incommensurate dynamic correlations in the \(S=\frac{1}{2}\) triangular-lattice antiferromagnet Ca3ReO5Cl2. Nat. Commun. 13, 6310 (2022).
Choi, Y. et al. Bosonic spinons in anisotropic triangular antiferromagnets. Nat. Commun. 12, 6453 (2021).
Bonner, J. C. & Fisher, M. E. Linear magnetic chains with anisotropic coupling. Phys. Rev. 135, A640 (1964).
Gen, M., Okamoto, Y., Mori, M., Takenaka, K. & Kohama, Y. Magnetization process of the breathing pyrochlore magnet CuInCr4S8 in ultrahigh magnetic fields up to 150 T. Phys. Rev. B 101, 054434 (2020).
Morita, K. & Tohyama, T. Finite-temperature properties of the Kitaev-Heisenberg models on kagome and triangular lattices studied by improved finite-temperature Lanczos methods. Phys. Rev. Res. 2, 013205 (2020).
Jaklič, J. & Prelovšek, P. Lanczos method for the calculation of finite-temperature quantities in correlated systems. Phys. Rev. B 49, 5065(R) (1994).
Uemura, Y. J. et al. Spin fluctuations in frustrated Kagomé lattice system SrCr8Ga4O19 studied by muon spin relaxation. Phys. Rev. Lett. 73, 3306 (1994).
Povarov, K. Y. et al. Electron spin resonance of the interacting spinon liquid. Phys. Rev. Lett. 128, 187202 (2022).
Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15 (2007).
Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn. 80, SB028 (2011).
Nakamura, M. et al. First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn. 78, 093002 (2009).
Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software ‘Utsusemi’ for Chopper Spectrometers at MLF. J.-PARC J. Phys. Soc. Jpn. 82, SA031 (2013).
Kadowaki, H. https://github.com/kadowaki-h/absorptionfactoramateras.
Bougourzi, A. H., Couture, M. & Kacir, M. Exact two-spinon dynamical correlation function of the one-dimensional Heisenberg model. Phys. Rev. B 54, R12669(R) (1996).
Karbach, M., Müller, G., Bougourzi, A. H., Fledderjohann, A. & Mütter, K.-H. Two-spinon dynamic structure factor of the one-dimensional \(s=\frac{1}{2}\) Heisenberg antiferromagnet. Phys. Rev. B 55, 12510 (1997).
Kajimoto, R., Sato, K., Inamura, Y. & Fujita, M. in Proceedings of the Joint Conference on Quasielastic Neutron Scattering and the Workshopon Inelastic Neutron Spectrometers QENS/WINS 2016: Probing Nanoscale Dynamics in Energy Related Materials (eds, Fernandez-Alonso, F., Price, D. L., Grzimek, V., Lohstroh, W., Schneidewind, A., & Russina, M.) 050004 (AIP, New York, 2018).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comp. Phys. Commun. 196, 36 (2015).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Kawamura, M., Gohda, Y. & Tsuneyuki, S. Improved tetrahedron method for the Brillouin-zone integration applicable to response functions. Phys. Rev. B 89, 094515 (2014).
Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).
Miyake, T., Aryasetiawan, F. & Imada, M. Ab initio procedure for constructing effective models of correlated materials with entangled band structure. Phys. Rev. B 80, 155134 (2009).
Nakamura, K. et al. RESPACK: An ab initio tool for derivation of effective low-energy model of material. Comp. Phys. Commun. 261, 107781 (2021).
Suzumura, T. et al. mdx: A cloud platform for supporting data science and cross-disciplinary research collaborations. In Proceedings of the IEEE International Conference on Cloud and Big Data Computing, pp. 1–7 (IEEE, 2022).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).