• Adame, M. F. et al. All tidal wetlands are blue carbon ecosystems. BioScience 74, 253–268 (2024).

    Article 

    Google Scholar
     

  • Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar
     

  • O’Donnell, K. L. et al. Saltwater intrusion and sea level rise threatens US rural coastal landscapes and communities. Anthropocene 45, 100427 (2024).

    Article 

    Google Scholar
     

  • Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chambers, J. Q. et al. Hurricane Katrina’s carbon footprint on US Gulf Coast forests. Science 318, 1107–1107 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Article 

    Google Scholar
     

  • McDowell, N. et al. Processes and mechanisms of coastal woody-plant mortality. Glob. Change Biol. 28, 5881–5900 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. Ecol. Appl. 31, e02339 (2021).

    Article 

    Google Scholar
     

  • White, E., Ury, E. A., Bernhardt, E. S. & Yang, X. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. Ecosystems 25, 812–827 (2022).

    Article 

    Google Scholar
     

  • Williams, K., MacDonald, M. & Sternberg, L. daS. L. Interactions of storm, drought, and sea-level rise on coastal forest: a case study. J. Coast. Res. 19, 1116–1121 (2003).


    Google Scholar
     

  • Conner, W. H. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States (Springer, 2007).

    Book 

    Google Scholar
     

  • Powell, E. et al. Spaceborne lidar observations reveal impacts of inundation on coastal forest structure across the US mid-Atlantic. Estuar. Coast. Shelf Sci. 323, 109372 (2025).

    Article 

    Google Scholar
     

  • Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Smith, A. J. & Kirwan, M. L. Sea level-driven marsh migration results in rapid net loss of carbon. Geophys. Res. Lett. 48, e2021GL092420 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carmichael, M. J., Helton, A. M., White, J. C. & Smith, W. K. Standing dead trees are a conduit for the atmospheric flux of CH4 and CO2 from wetlands. Wetlands 38, 133–143 (2018).

    Article 

    Google Scholar
     

  • Martinez, M. & Ardón, M. Drivers of greenhouse gas emissions from standing dead trees in ghost forests. Biogeochemistry 154, 471–488 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E. & Workman, T. W. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999).

    Article 

    Google Scholar
     

  • Smith, I., Fiorino, G., Grabas, G. & Wilcox, D. A. Wetland vegetation response to record-high Lake Ontario water levels. J. Gt Lakes Res. 47, 160–167 (2021).

    Article 

    Google Scholar
     

  • Tully, K. et al. The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience 69, 368–378 (2019).

    Article 

    Google Scholar
     

  • Bhattachan, A. et al. Evaluating the effects of land-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. Elem. Sci. Anthr. 6, 62 (2018).

    Article 

    Google Scholar
     

  • Sallenger, A. H., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884–888 (2012).

    Article 

    Google Scholar
     

  • Velasquez-Manoff, M. As sea levels rise, so do ghost forests. The New York Times (8 October 2019).

  • Zee, G., Griswold, L., Manzo, D. & Pereira, I. ‘Ghost forests’ threaten New Jersey’s water, ecosystem. ABC News (29 November 2023).

  • Cheng, Y. et al. Scattered tree death contributes to substantial forest loss in California. Nat. Commun. 15, 641 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dixon, D. J., Zhu, Y., Brown, C. F. & Jin, Y. Satellite detection of canopy-scale tree mortality and survival from California wildfires with spatio-temporal deep learning. Remote Sens. Environ. 298, 113842 (2023).

    Article 

    Google Scholar
     

  • Field, C. R., Gjerdrum, C. & Elphick, C. S. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol. Conserv. 201, 363–369 (2016).

    Article 

    Google Scholar
     

  • Pasquarella, V. J., Elkinton, J. S. & Bradley, B. A. Extensive gypsy moth defoliation in Southern New England characterized using Landsat satellite observations. Biol. Invasions 20, 3047–3053 (2018).

    Article 

    Google Scholar
     

  • Bernhardt, E. Coastal freshwater wetlands squeezed between migrating salt marshes and working lands. Sci. Adv. 8, eadd1628 (2022).

    Article 

    Google Scholar
     

  • Chen, Y. & Kirwan, M. L. Upland forest retreat lags behind sea-level rise in the mid-Atlantic coast. Glob. Change Biol. 30, e17081 (2024).

    Article 

    Google Scholar
     

  • Tully, K. L., Weissman, D., Wyner, W. J., Miller, J. & Jordan, T. Soils in transition: saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry 142, 339–356 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ury, E. A., Wright, J. P., Ardón, M. & Bernhardt, E. S. Saltwater intrusion in context: soil factors regulate impacts of salinity on soil carbon cycling. Biogeochemistry 157, 215–226 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ardón, M., Morse, J. L., Colman, B. P. & Bernhardt, E. S. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Glob. Change Biol. 19, 2976–2985 (2013).

    Article 

    Google Scholar
     

  • Kirwan, M. L. et al. Feedbacks regulating the salinization of coastal landscapes. Annu. Rev. Mar. Sci. 17, 461–484 (2025).

    Article 

    Google Scholar
     

  • Helton, A. M. et al. Over, under, and through: hydrologic connectivity and the future of coastal landscape salinization. Water Resour. Res. 61, e2024WR038720 (2025).

    Article 

    Google Scholar
     

  • Ohenhen, L. O., Shirzaei, M., Ojha, C., Sherpa, S. F. & Nicholls, R. J. Disappearing cities on US coasts. Nature 627, 108–115 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Osland, M. J. et al. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 8, eabo5174 (2022).

    Article 

    Google Scholar
     

  • Maxwell, T. L. et al. Soil carbon in the world’s tidal marshes. Nat. Commun. 15, 10265 (2024).

  • Aakala, T., Kuuluvainen, T., Gauthier, S. & De Grandpré, L. Standing dead trees and their decay-class dynamics in the northeastern boreal old-growth forests of Quebec. Ecol. Manag. 255, 410–420 (2008).

    Article 

    Google Scholar
     

  • Kearney, W. S., Fernandes, A. & Fagherazzi, S. Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches. PLoS ONE 14, e0215977 (2019).

    Article 

    Google Scholar
     

  • McDowell, N. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lagomasino, D. et al. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 12, 4003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • White, E. & Kaplan, D. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Health Sustain. 3, e01258 (2017).

    Article 

    Google Scholar
     

  • Fagherazzi, S. et al. The ecohydrology of coastal ghost forests. Ecohydrology 18, e70020 (2025).

    Article 

    Google Scholar
     

  • Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Neville, J. A., Emanuel, R. E., Ardón, M. & Pavelsky, T. Location and design of flow control structures differentially influence salinity patterns in small artificial drainage systems. J. Water Resour. Plan. Manag. 149, 05023002 (2023).

    Article 

    Google Scholar
     

  • van Zelst, V. T. M. et al. Cutting the costs of coastal protection by integrating vegetation in flood defences. Nat. Commun. 12, 6533 (2021).

    Article 

    Google Scholar
     

  • Fagherazzi, S. et al. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 7, 25 (2019).

    Article 

    Google Scholar
     

  • Du, L. et al. Drainage ditch network extraction from lidar data using deep convolutional neural networks in a low relief landscape. J. Hydrol. 628, 130591 (2024).

    Article 

    Google Scholar
     

  • Storm surge overview. NOAA https://www.weather.gov/phi/stormsurge (2025).

  • National Agriculture Imagery Program (NAIP). USDA Farm Production and Conservation Business Center https://naip-usdaonline.hub.arcgis.com/ (2024).

  • Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).

    Article 

    Google Scholar
     

  • Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).

    Article 

    Google Scholar
     

  • Kattenborn, T., Leitloff, J., Schiefer, F. & Hinz, S. Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 173, 24–49 (2021).

    Article 

    Google Scholar
     

  • Ouali, Y., Hudelot, C. & Tami, M. An overview of deep semi-supervised learning. Preprint at https://arxiv.org/abs/2006.05278 (2020).

  • Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Navab, N. et al.) 234–241 (Springer, 2015).

  • Tan, M. & Le, Q. V. EfficientNet: rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning 6105–6114 (ICML, 2019).

  • Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

  • Abraham, N. & Khan, N. M. A novel focal tversky loss function with improved attention U-Net for lesion segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging 683–687 (IEEE, 2019).

  • Detection surveys. US Forest Service https://www.fs.usda.gov/science-technology/data-tools-products/fhp-mapping-reporting/detection-surveys (2021).

  • 3D Elevation Program. US Geological Survey https://www.usgs.gov/3d-elevation-program (2024).

  • NOAA Shoreline. NOAA https://shoreline.noaa.gov/med-res.html (2024).

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Coastal Change Analysis Program (C-CAP) regional land cover. NOAA Office for Coastal Management https://coast.noaa.gov/digitalcoast/data/ccapregional.html (2024).

  • Protected Areas Database of the United States (PAD-US). USGS https://doi.org/10.5066/P96WBCHS (2024).

  • Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27, 286–306 (1995).

    Article 

    Google Scholar
     

  • Caldas de Castro, M. & Singer, B. H. Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr. Anal. 38, 180–208 (2006).

    Article 

    Google Scholar
     

  • Breiman, L. Random forest. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Hoeppner, S. S., Shaffer, G. P. & Perkins, T. E. Through droughts and hurricanes: tree mortality, forest structure, and biomass production in a coastal swamp targeted for restoration in the Mississippi River Deltaic Plain. For. Ecol. Manag. 256, 937–948 (2008).

    Article 

    Google Scholar
     

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar
     

  • Zhu, M. et al. Class weights random forest algorithm for processing class imbalanced medical data. IEEE Access 6, 4641–4652 (2018).

    Article 

    Google Scholar
     

  • Nembrini, S., König, I. R. & Wright, M. N. The revival of the Gini importance?. Bioinformatics 34, 3711–3718 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R. J. 9, 421 (2017).

    Article 

    Google Scholar
     

  • National hydrography dataset. US Geological Survey https://www.usgs.gov/national-hydrography/national-hydrography-dataset (2024).

  • TIGER/Line Shapefiles. US Census Bureau https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html (2024).

  • National levee database. US Army Corps of Engineers https://levees.sec.usace.army.mil/ (2024).

  • Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).

    Article 

    Google Scholar
     

  • Yeung, H. C. H. et al. Overlooked and extensive ghost forest formation across the US Atlantic coast–data. Zenodo https://doi.org/10.5281/zenodo.16380867 (2025).

  • Individual tree species parameter maps. US Forest Service https://www.fs.usda.gov/science-technology/data-tools-products/fhp-mapping-reporting/individual-tree-species-parameter-maps (2022).