Lioubtchenko, D., Tretyakov, S. & Dudorov, S. Millimeter-wave waveguides Vol. 114 (Springer Science & Business Media, 2003).
Carpintero, G., Garcia-Munoz, E., Hartnagel, H., Preu, S. & Raisanen, A. Semiconductor terahertz technology: devices and systems at room temperature operation (John Wiley & Sons, 2015).
Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016).
Headland, D., Fujita, M., Carpintero, G., Nagatsuma, T. & Withayachumnankul, W. Terahertz integration platforms using substrateless all-silicon microstructures. APL Photonics 8 (2023).
Smirnov, S. et al. Sub-thz phase shifters enabled by photoconductive single-walled carbon nanotube layers. Adv. Photonics Res. 4, 2200042 (2023).
Chicherin, D., Sterner, M., Lioubtchenko, D., Oberhammer, J. & Räisänen, A. V. Analog-type millimeter-wave phase shifters based on mems tunable high-impedance surface and dielectric rod waveguide. Int. J. Microw. Wirel. Technol. 3, 533–538 (2011).
Yeh, C. & Shimabukuro, F. I. The essence of dielectric waveguides (Springer, 2008).
Stewart, G. & Culshaw, B. Optical waveguide modelling and design for evanescent field chemical sensors. Optical Quantum Electron. 26, S249–S259 (1994).
Huang, W.-P. Coupled-mode theory for optical waveguides: an overview. J. Optical Soc. Am. A 11, 963–983 (1994).
Withayachumnankul, W., Fujita, M. & Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Optical Mater. 6, 1800401 (2018).
Gao, W. et al. Effective-medium-cladded dielectric waveguides for terahertz waves. Opt. express 27, 38721–38734 (2019).
Headland, D., Withayachumnankul, W., Yu, X., Fujita, M. & Nagatsuma, T. Unclad microphotonics for terahertz waveguides and systems. J. Lightwave Technol. 38, 6853–6862 (2020).
Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photonics 14, 446–451 (2020).
Pousi, P., Lioubtchenko, D., Dudorov, S. & Raisanen, A. V. Dielectric rod waveguide travelling wave amplifier based on algaas/gaas heterostructure, 1082–1085 (2008).
Koala, R. A., Fujita, M. & Nagatsuma, T. Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systems. Nanophotonics 11, 1741–1759 (2022).
Rivera-Lavado, A. et al. Planar lens–based ultra-wideband dielectric rod waveguide antenna for tunable thz and sub-thz photomixer sources. J. Infrared, Millim., Terahertz Waves 40, 838–855 (2019).
Headland, D. & Carpintero, G. Robust unclad terahertz waveguides and integrated components enabled by multimode effects and matched slot couplers. In IEEE Transactions on Terahertz Science and Technology, Vol. 15, 885–893 (2025).
Chen, H. et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Optical Mater. 7, 1801318 (2019).
Campion, J. et al. Ultra-wideband integrated graphene-based absorbers for terahertz waveguide systems. Adv. Electron. Mater. 8, 2200106 (2022).
Shui, W. et al. Ti3c2tx mxene sponge composite as broadband terahertz absorber. Adv. optical Mater. 8, 2001120 (2020).
Starchenko, V. V. et al. Electrochemically and optically-switched terahertz electromagnetic interference shielding using mxenes. Phys. Rev. Mater. 9, 074008 (2025).
Xiao, D. et al. Flexible ultra-wideband terahertz absorber based on vertically aligned carbon nanotubes. ACS Appl. Mater. interfaces 11, 43671–43680 (2019).
Drozdz, P. A. et al. Highly efficient absorption of thz radiation using waveguide-integrated carbon nanotube/cellulose aerogels. Applied Materials Today 29, (2022).
Generalov, A. et al. Carbon nanotube network varactor. Nanotechnology 26, 045201 (2015).
Burdanova, M. G. et al. Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon 173, 245–252 (2021).
He, X. et al. Carbon nanotube terahertz detector. Nano Lett. 14, 3953–3958 (2014).
Zubair, A. et al. Carbon nanotube fiber terahertz polarizer. Appl. Phys. Lett. 108, (2016).
Radivon, A. V. et al. Expanding thz vortex generation functionality with advanced spiral zone plates based on single-walled carbon nanotube films. Adv. Optical Mater. 12, 2303282 (2024).
Singh, S. K., Akhtar, M. J. & Kar, K. K. Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. interfaces 10, 24816–24828 (2018).
Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
Kivistö, S. et al. Carbon nanotube films for ultrafast broadband technology. Opt. Express 17, 2358–2363 (2009).
Gladush, Y. et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation. Nano Lett. 19, 5836–5843 (2019).
Jeong, H. et al. All-fiber mode-locked laser oscillator with pulse energy of 34 nj using a single-walled carbon nanotube saturable absorber. Opt. Express 22, 22667–22672 (2014).
Ermolaev, G. A. et al. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 116, 231103 (2020).
Romanov, S. A., Alekseeva, A. A., Khabushev, E. M., Krasnikov, D. V. & Nasibulin, A. G. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by joule heating. Carbon 168, 193–200 (2020).
Khabushev, E. M., Krasnikov, D. V., Kolodiazhnaia, J. V., Bubis, A. V. & Nasibulin, A. G. Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications. Carbon 161, 712–717 (2020).
Khabushev, E. M. et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10, 6962–6966 (2019).
Hong, Y. et al. Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74, 1098–1102 (2003).
Nefedova, I. I., Lioubtchenko, D. V., Nefedov, I. S. & Räisänen, A. V. Dielectric constant estimation of a carbon nanotube layer on the dielectric rod waveguide at millimeter wavelengths. IEEE Trans. Microw. Theory Tech. 63, 3265–3271 (2015).
Nefedova, I. I., Lioubtchenko, D. V. & Räisänen, A. V.Propagation constant measurements of silver nanowires, carbon nanotubes and graphene at 75–110 ghz, 640-643 (IEEE, 2014).
Nefedova, I. I., Lioubtchenko, D. V., Nefedov, I. S. & Räisänen, A. V. Conductivity of carbon nanotube layers at low-terahertz frequencies. IEEE Trans. Terahertz Sci. Technol. 6, 840–845 (2016).
Pozar, D. M.Microwave engineering: theory and techniques (John wiley & sons, 2021).
Krasnikov, D. V. et al. Ethylene-induced welding of single-walled carbon nanotube films to enhance mechanical and optoelectronic properties. Carbon 238, 120230 (2025).
Novikov, I. V. et al. Aerosol cvd carbon nanotube thin films: From synthesis to advanced applications: A comprehensive review. Adv. Mater., 2413777 https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202413777 (2025).
Grebenko, A. K. et al. High-quality graphene using boudouard reaction. Adv. Sci. 9, 2200217 (2022).
Khabushev, E. M., Kolodiazhnaia, J. V., Krasnikov, D. V. & Nasibulin, A. G. Activation of catalyst particles for single-walled carbon nanotube synthesis. Chem. Eng. J. 413, 127475 (2021).
Kaskela, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 10, 4349–4355 (2010).
Rumiantsev, A. & Ridler, N. Vna calibration. IEEE Microw. Mag. 9, 86–99 (2008).
Smirnov, S., Xenidis, N., Oberhammer, J. & Lioubtchenko, D. V. Generation of high-order modes in sub-thz dielectric waveguides by misalignment of the transition structure. IEEE, 479–482 (2022).
Huang, Z. et al. Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Optical Mater. 6, 1801165 (2018).
Xu, S.-T. et al. Active terahertz shielding and absorption based on graphene foam modulated by electric and optical field excitation. Adv. Optical Mater. 7, 1900555 (2019).
Hong, X. et al. High-permittivity solvents increase mxene stability and stacking order enabling ultraefficient terahertz shielding. Adv. Sci. 11, 2305099 (2024).
Pavlou, C. et al. Effective emi shielding behaviour of thin graphene/pmma nanolaminates in the thz range. Nat. Commun. 12, 4655 (2021).
Lin, Z. et al. Highly stable 3d ti3c2t x mxene-based foam architectures toward high-performance terahertz radiation shielding. ACS nano 14, 2109–2117 (2020).