• Lioubtchenko, D., Tretyakov, S. & Dudorov, S. Millimeter-wave waveguides Vol. 114 (Springer Science & Business Media, 2003).

  • Carpintero, G., Garcia-Munoz, E., Hartnagel, H., Preu, S. & Raisanen, A. Semiconductor terahertz technology: devices and systems at room temperature operation (John Wiley & Sons, 2015).

  • Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Headland, D., Fujita, M., Carpintero, G., Nagatsuma, T. & Withayachumnankul, W. Terahertz integration platforms using substrateless all-silicon microstructures. APL Photonics 8 (2023).

  • Smirnov, S. et al. Sub-thz phase shifters enabled by photoconductive single-walled carbon nanotube layers. Adv. Photonics Res. 4, 2200042 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chicherin, D., Sterner, M., Lioubtchenko, D., Oberhammer, J. & Räisänen, A. V. Analog-type millimeter-wave phase shifters based on mems tunable high-impedance surface and dielectric rod waveguide. Int. J. Microw. Wirel. Technol. 3, 533–538 (2011).

    Article 

    Google Scholar
     

  • Yeh, C. & Shimabukuro, F. I. The essence of dielectric waveguides (Springer, 2008).

  • Stewart, G. & Culshaw, B. Optical waveguide modelling and design for evanescent field chemical sensors. Optical Quantum Electron. 26, S249–S259 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, W.-P. Coupled-mode theory for optical waveguides: an overview. J. Optical Soc. Am. A 11, 963–983 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Withayachumnankul, W., Fujita, M. & Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Optical Mater. 6, 1800401 (2018).

    Article 

    Google Scholar
     

  • Gao, W. et al. Effective-medium-cladded dielectric waveguides for terahertz waves. Opt. express 27, 38721–38734 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Headland, D., Withayachumnankul, W., Yu, X., Fujita, M. & Nagatsuma, T. Unclad microphotonics for terahertz waveguides and systems. J. Lightwave Technol. 38, 6853–6862 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photonics 14, 446–451 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pousi, P., Lioubtchenko, D., Dudorov, S. & Raisanen, A. V. Dielectric rod waveguide travelling wave amplifier based on algaas/gaas heterostructure, 1082–1085 (2008).

  • Koala, R. A., Fujita, M. & Nagatsuma, T. Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systems. Nanophotonics 11, 1741–1759 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera-Lavado, A. et al. Planar lens–based ultra-wideband dielectric rod waveguide antenna for tunable thz and sub-thz photomixer sources. J. Infrared, Millim., Terahertz Waves 40, 838–855 (2019).

    Article 

    Google Scholar
     

  • Headland, D. & Carpintero, G. Robust unclad terahertz waveguides and integrated components enabled by multimode effects and matched slot couplers. In IEEE Transactions on Terahertz Science and Technology, Vol. 15, 885–893 (2025).

  • Chen, H. et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Optical Mater. 7, 1801318 (2019).

    Article 

    Google Scholar
     

  • Campion, J. et al. Ultra-wideband integrated graphene-based absorbers for terahertz waveguide systems. Adv. Electron. Mater. 8, 2200106 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shui, W. et al. Ti3c2tx mxene sponge composite as broadband terahertz absorber. Adv. optical Mater. 8, 2001120 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Starchenko, V. V. et al. Electrochemically and optically-switched terahertz electromagnetic interference shielding using mxenes. Phys. Rev. Mater. 9, 074008 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, D. et al. Flexible ultra-wideband terahertz absorber based on vertically aligned carbon nanotubes. ACS Appl. Mater. interfaces 11, 43671–43680 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drozdz, P. A. et al. Highly efficient absorption of thz radiation using waveguide-integrated carbon nanotube/cellulose aerogels. Applied Materials Today 29, (2022).

  • Generalov, A. et al. Carbon nanotube network varactor. Nanotechnology 26, 045201 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burdanova, M. G. et al. Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon 173, 245–252 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, X. et al. Carbon nanotube terahertz detector. Nano Lett. 14, 3953–3958 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubair, A. et al. Carbon nanotube fiber terahertz polarizer. Appl. Phys. Lett. 108, (2016).

  • Radivon, A. V. et al. Expanding thz vortex generation functionality with advanced spiral zone plates based on single-walled carbon nanotube films. Adv. Optical Mater. 12, 2303282 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Singh, S. K., Akhtar, M. J. & Kar, K. K. Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. interfaces 10, 24816–24828 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kivistö, S. et al. Carbon nanotube films for ultrafast broadband technology. Opt. Express 17, 2358–2363 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gladush, Y. et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation. Nano Lett. 19, 5836–5843 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, H. et al. All-fiber mode-locked laser oscillator with pulse energy of 34 nj using a single-walled carbon nanotube saturable absorber. Opt. Express 22, 22667–22672 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ermolaev, G. A. et al. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 116, 231103 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Romanov, S. A., Alekseeva, A. A., Khabushev, E. M., Krasnikov, D. V. & Nasibulin, A. G. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by joule heating. Carbon 168, 193–200 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khabushev, E. M., Krasnikov, D. V., Kolodiazhnaia, J. V., Bubis, A. V. & Nasibulin, A. G. Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications. Carbon 161, 712–717 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khabushev, E. M. et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10, 6962–6966 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Y. et al. Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74, 1098–1102 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nefedova, I. I., Lioubtchenko, D. V., Nefedov, I. S. & Räisänen, A. V. Dielectric constant estimation of a carbon nanotube layer on the dielectric rod waveguide at millimeter wavelengths. IEEE Trans. Microw. Theory Tech. 63, 3265–3271 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nefedova, I. I., Lioubtchenko, D. V. & Räisänen, A. V.Propagation constant measurements of silver nanowires, carbon nanotubes and graphene at 75–110 ghz, 640-643 (IEEE, 2014).

  • Nefedova, I. I., Lioubtchenko, D. V., Nefedov, I. S. & Räisänen, A. V. Conductivity of carbon nanotube layers at low-terahertz frequencies. IEEE Trans. Terahertz Sci. Technol. 6, 840–845 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pozar, D. M.Microwave engineering: theory and techniques (John wiley & sons, 2021).

  • Krasnikov, D. V. et al. Ethylene-induced welding of single-walled carbon nanotube films to enhance mechanical and optoelectronic properties. Carbon 238, 120230 (2025).

    Article 

    Google Scholar
     

  • Novikov, I. V. et al. Aerosol cvd carbon nanotube thin films: From synthesis to advanced applications: A comprehensive review. Adv. Mater., 2413777 https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202413777 (2025).

  • Grebenko, A. K. et al. High-quality graphene using boudouard reaction. Adv. Sci. 9, 2200217 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khabushev, E. M., Kolodiazhnaia, J. V., Krasnikov, D. V. & Nasibulin, A. G. Activation of catalyst particles for single-walled carbon nanotube synthesis. Chem. Eng. J. 413, 127475 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kaskela, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 10, 4349–4355 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rumiantsev, A. & Ridler, N. Vna calibration. IEEE Microw. Mag. 9, 86–99 (2008).

    Article 

    Google Scholar
     

  • Smirnov, S., Xenidis, N., Oberhammer, J. & Lioubtchenko, D. V. Generation of high-order modes in sub-thz dielectric waveguides by misalignment of the transition structure. IEEE, 479–482 (2022).

  • Huang, Z. et al. Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Optical Mater. 6, 1801165 (2018).

    Article 

    Google Scholar
     

  • Xu, S.-T. et al. Active terahertz shielding and absorption based on graphene foam modulated by electric and optical field excitation. Adv. Optical Mater. 7, 1900555 (2019).

    Article 

    Google Scholar
     

  • Hong, X. et al. High-permittivity solvents increase mxene stability and stacking order enabling ultraefficient terahertz shielding. Adv. Sci. 11, 2305099 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pavlou, C. et al. Effective emi shielding behaviour of thin graphene/pmma nanolaminates in the thz range. Nat. Commun. 12, 4655 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Z. et al. Highly stable 3d ti3c2t x mxene-based foam architectures toward high-performance terahertz radiation shielding. ACS nano 14, 2109–2117 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar