• Gross, D. J. The role of symmetry in fundamental physics. Proc. Natl Acad. Sci. USA 93, 14256–14259 (1996).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 15005 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chen, W. J., Özdemir, S. K., Zhao, G. M., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R. M., Wang, Y. & Zhang, X. Single-mode laser by parity–time symmetry breaking. Science 346, 972–975 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. Y. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article 
    ADS 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 

    Google Scholar
     

  • Zhu, X. F., Ramezani, H., Shi, C. Z., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).


    Google Scholar
     

  • Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293–297 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Han, Y. C. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).

    Article 

    Google Scholar
     

  • Wu, J. H., Artoni, M. & La Rocca, G. C. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys. Rev. Lett. 113, 123004 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).

    Article 

    Google Scholar
     

  • Konotop, V. V. & Zezyulin, D. A. Odd-time reversal symmetry induced by an anti-PT-symmetric medium. Phys. Rev. Lett. 120, 123902 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Azizi, P. et al. Lattice materials with topological states optimized on demand. Proc. Natl Acad. Sci. USA 122, e2506787122 (2025).

    Article 
    MathSciNet 

    Google Scholar
     

  • Qi, M. H. et al. Geometric phase and localized heat diffusion. Adv. Mater. 34, 2202241 (2022).

    Article 

    Google Scholar
     

  • Qi, M. H. et al. Observation of high-decay-rate topological corner states in diffusive thermal metamaterials. Phys. Rev. Lett. 135, 096604 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Xu, G. et al. Non-Hermitian chiral heat transport. Phys. Rev. Lett. 130, 266303 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cao, P. C. et al.Observation of parity–time symmetry in diffusive systems. Sci. Adv. 10, eadn1746 (2024).

    Article 

    Google Scholar
     

  • Xu, G. et al. Hydrodynamic moiré superlattice. Science 386, 1377–1383 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Xu, G. et al. Diffusive topological transport in spatiotemporal thermal lattices. Nat. Phys. 18, 450–456 (2022).

    Article 

    Google Scholar
     

  • Xu, G. Q. et al. Observation of Weyl exceptional rings in thermal diffusion. Proc. Natl Acad. Sci. USA 119, e2110018119 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xu, G. Q., Li, Y., Li, W., Fan, S. H. & Qiu, C.-W. Configurable phase transitions in a topological thermal material. Phys. Rev. Lett. 127, 105901 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yang, F. B. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, C. L., Bamidele, E. A., Shen, X. Y., Zhu, G. M. & Li, B. W. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).

    Article 

    Google Scholar
     

  • Liu, Z. F. et al. Topological thermal transport. Nat. Rev. Phys. 6, 554–565 (2024).

    Article 

    Google Scholar
     

  • Jin, P. et al. Tunable liquid-solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).

  • Jin, P. et al. Deep learning-assisted active metamaterials with heat-enhanced thermal transport. Adv. Mater. 36, 2305791 (2024).

    Article 

    Google Scholar
     

  • Li, Y., L. Xu & Qiu. C.-W. Thermal Metamaterials: Controlling the Flow of Heat (World Scientific, 2025).

  • Tirole, R. et al. Double-slit time diffraction at optical frequencies. Nat. Phys. 19, 999–1002 (2023).

    Article 

    Google Scholar
     

  • Sapienza, R. Splitting light pulses. Nat. Photon. 19, 551–552 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z. F. et al. Topology in thermal, particle, and plasma diffusion metamaterials. Chem. Rev. 125, 8655–8730 (2025).

    Article 

    Google Scholar
     

  • Fan, C. Z., Wu, C.-L., Wang, Y., Wang, B. & Wang, J. Thermal metamaterials: from static to dynamic heat manipulation. Phys. Rep. 1077, 1–111 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dai, G. L. et al. Controlling transient and coupled diffusion with pseudoconformal mapping. Proc. Natl Acad. Sci. USA 122, e2511708122 (2025).

    Article 

    Google Scholar
     

  • Lei, M. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proc. Natl Acad. Sci. USA 121, e2410041121 (2024).

    Article 

    Google Scholar
     

  • Tan, H. H. et al. Bioinspired energy-free temperature gradient regulator for significant enhancement of thermoelectric conversion efficiency. Proc. Natl Acad. Sci. USA 122, e2424421122 (2025).

    Article 

    Google Scholar
     

  • Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article 

    Google Scholar
     

  • Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

    Article 

    Google Scholar
     

  • Lei, M. et al. Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition. Nat. Phys. 21, 1196–1202 (2025).

    Article 

    Google Scholar
     

  • Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article 
    ADS 

    Google Scholar