• Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article 

    Google Scholar
     

  • Lindner, N. H., Bergman, D. L., Refael, G. & Galitski, V. Topological Floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nat. Commun. 6, 6708 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet Weyl semimetal induced by off-resonant light. Europhys. Lett. 105, 17004 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-II Weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Shin, D. et al. Phonon-driven spin-Floquet magneto-valleytronics in mos2. Nat. Commun. 9, 638 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Topp, G. E. et al. Topological Floquet engineering of twisted bilayer graphene. Phys. Rev. Res. 1, 023031 (2019).

    Article 

    Google Scholar
     

  • Katz, O., Refael, G. & Lindner, N. H. Optically induced flat bands in twisted bilayer graphene. Phys. Rev. B 102, 155123 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez-Vega, M., Vogl, M. & Fiete, G. A. Low-frequency and Moiré–Floquet engineering: A review. Ann. Phys. 435, 168434 (2021).

    Article 

    Google Scholar
     

  • Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Aeschlimann, S. et al. Survival of Floquet–Bloch states in the presence of scattering. Nano Lett. 21, 5028–5035 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, S. et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, S. et al. Floquet engineering of black Phosphorus upon below-gap pumping. Phys. Rev. Lett. 131, 116401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic Cr2O3. Nat. Mater. 23, 790–795 (2024).

    Article 
    ADS 

    Google Scholar
     

  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article 

    Google Scholar
     

  • Park, S. et al. Steady Floquet–Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hübener, H., De Giovannini, U. & Rubio, A. Phonon driven Floquet matter. Nano Lett. 18, 1535–1542 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schüler, M. et al. Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020).


    Google Scholar
     

  • Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At., Mol. Opt. Phys. 53, 225601 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Park, S. T. Interference in Floquet–Volkov transitions. Phys. Rev. A 90, 013420 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016).

    Article 

    Google Scholar
     

  • Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008).

    Article 
    ADS 

    Google Scholar
     

  • López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008).

    Article 
    ADS 

    Google Scholar
     

  • López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: gaps and band structure. Philos. Mag. 90, 2977–2988 (2010).

    Article 

    Google Scholar
     

  • Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta. Phys. Rev. B 102, 161403 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved XUV ARPES with tunable 24–33 eV laser pulses at 30 meV resolution. Nat. Commun. 10, 3535 (2019).

    Article 
    ADS 

    Google Scholar