• Anderson, M. H. et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article 

    Google Scholar
     

  • Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article 

    Google Scholar
     

  • Tenney, C. M., Croft, Z. F. & McMahon, J. M. Metallic hydrogen: a liquid superconductor? J. Phys. Chem. C 125, 23349–23355 (2021).

    Article 

    Google Scholar
     

  • Leggett, A. J. in PWA90: A Lifetime of Emergence (eds Chandra, P., Coleman, P., Kotliar, G., Ong, P., Stein, D. L. & Yu, C.) 97–103 (World Scientific, 2016).

  • Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article 

    Google Scholar
     

  • Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Disa, A. S. et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 617, 73–78 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nova, T. F. et al. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dai, H. & Lieber, C. M. Solid-hexatic-liquid phases in two-dimensional charge-density waves. Phys. Rev. Lett. 69, 1576–1579 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Dai, H., Chen, H. & Lieber, C. M. Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 66, 3183 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Hayden, S. M. & Tranquada, J. M. Charge correlations in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 15, 215 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Subires, D. et al. Frustrated charge density wave and quasi-long-range bond-orientational order in the magnetic kagome FeGe. Nat. Commun. 16, 4091 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Delacrétaz, L. V. et al. Theory of hydrodynamic transport in fluctuating electronic charge density wave states. Phys. Rev. B 96, 195128 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Taraphder, A. et al. Preformed excitonic liquid route to a charge density wave in 2H-TaSe2. Phys. Rev. Lett. 106, 236405 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Snow, C. S. et al. Quantum melting of the charge-density-wave state in 1T-TiSe2. Phys. Rev. Lett. 91, 136402 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Ciftja, O., Lapilli, C. M. & Wexler, C. Liquid crystalline states for two-dimensional electrons in strong magnetic fields. Phys. Rev. B 69, 125320 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Wexler, C. & Ciftja, O. Liquid crystalline states in quantum Hall systems. J. Phys.: Condens. Matter 14, 3705 (2002).

    ADS 

    Google Scholar
     

  • Fradkin, E. & Kivelson, S. A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Nelson, D. R. & Halperin, B. I. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kosterlitz, J. M. Kosterlitz–Thouless physics: a review of key issues. Rep. Prog. Phys. 79, 026001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Keim, P., Maret, G. & von Grünberg, H. H. Frank’s constant in the hexatic phase. Phys. Rev. E 75, 031402 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kusner, R. E. et al. Two-stage melting of a two-dimensional collodial lattice with dipole interactions. Phys. Rev. Lett. 73, 3113–3116 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Troyanovski, A. M. et al. STM imaging of flux line arrangements in the peak effect regime. Phys. Rev. Lett. 89, 147006 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Guillamón, I. et al. Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5, 651–655 (2009).

    Article 

    Google Scholar
     

  • Roy, I. et al. Melting of the vortex lattice through intermediate hexatic fluid in an a-MoGe thin film. Phys. Rev. Lett. 122, 047001 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Brock, J. D. et al. Orientational and positional order in a tilted hexatic liquid-crystal phase. Phys. Rev. Lett. 57, 98–101 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, M. et al. Observation of two-dimensional hexatic behavior in free-standing liquid-crystal thin films. Phys. Rev. Lett. 61, 550–553 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Sharma, R. et al. Thermal melting of a vortex lattice in a quasi two-dimensional Bose gas. Phys. Rev. Lett. 133, 143401 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Huang, P. et al. Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase. Nat. Nanotechnol. 15, 761–767 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gallet, F. et al. Fluctuations and shear modulus of a classical two-dimensional electron solid: experiment. Phys. Rev. Lett. 49, 212–215 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Knighton, T. et al. Evidence of two-stage melting of Wigner solids. Phys. Rev. B 97, 085135 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sung, S. H. et al. Endotaxial stabilization of 2D charge density waves with long-range order. Nat. Commun. 15, 1403 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Domröse, T. et al. Light-induced hexatic state in a layered quantum material. Nat. Mater. 22, 1345–1351 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Givens, F. L. & Fredericks, G. E. Thermal expansion op NbSe2 and TaS2. J. Phys. Chem. Solids 38, 1363–1365 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Gruner, G. Density Waves in Solids (CRC Press, 2018).

  • Thomson, R. E. et al. Local charge-density-wave structure in 1T-TaS2 determined by scanning tunneling microscopy. Phys. Rev. B 38, 10734–10743 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys.: Condens. Matter 23, 213001 (2011).

    ADS 

    Google Scholar
     

  • Sutter, T. M. et al. Vector-based feedback of continuous wave radiofrequency compression cavity for ultrafast electron diffraction. Struct. Dyn. 11, 024303 (2024).

    Article 

    Google Scholar
     

  • Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2019).

    Article 

    Google Scholar
     

  • Cheng, Y. et al. Light-induced dimension crossover dictated by excitonic correlations. Nat. Commun. 13, 963 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gonzalez-Vallejo, I. et al. Time-resolved structural dynamics of the out-of-equilibrium charge density wave phase transition in GdTe3. Struct. Dyn. 9, 014502 (2022).

    Article 

    Google Scholar
     

  • Trigo, M. et al. Coherent order parameter dynamics in SmTe3. Phys. Rev. B 99, 104111 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Han, T. R. T. et al. Structural dynamics of two-dimensional charge-density waves in CeTe3 investigated by ultrafast electron crystallography. Phys. Rev. B 86, 075145 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Dziarmaga, J. Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Polkovnikov, A. Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Di Salvo, F. J. et al. Effects of doping on charge-density waves in layer compounds. Phys. Rev. B 12, 2220 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Di Salvo, F. J. et al. Preparation and properties of a new polytype of tantalum disulfide (4Hb-TaS2). J. Phys. Chem. Solids 34, 1357–1362 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J. S. H. Observation of a hidden charge density wave liquid. Zenodo https://doi.org/10.5281/zenodo.15453892 (2025).

  • Sutter, T., Lee, J., Karapetrov, G., Musumeci, P. & Kogar, A. Two dimensional molecular dynamics simulation (KTHNY). Zenodo https://doi.org/10.5281/zenodo.17383782 (2025).