• Smit, J. & Brinkhuis, H. The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands); Summary of results and a scenario of events. Geol. Mijnb. 75, 283–293 (1996).


    Google Scholar
     

  • Surlyk, F. & Nielsen, J. M. The last ammonite? Bull. Geol. Soc. Den. 46, 115–119 (1999).


    Google Scholar
     

  • Jagt, J. W. M., Smit, J. & Schulp, A. S. Early Paleocene ammonites and other molluscan taxa from the Ankerpoort-Curfs quarry (Geulhem, southern Limburg, the Netherlands). In Bioevents: Their Stratigraphical Records, Patterns and Causes, Caravaca, 3rd–8th June (ed. Lamolda, M. A.). Vol. 113 (Ayuntamiento de Caravaca de la Cruz, 2003).

  • Machalski, M. & Heinberg, C. H. Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Bull. Geol. Soc. Den. 52, 21–35 (2005).


    Google Scholar
     

  • Machalski, M., Jagt, J. W. M., Heinberg, C., Landman, N. H. & Hakansson, E. Dańskie amonity – obecny stan wiedzy i perspektywy badań. Prz. Geol. 57, 486–493 (2009).


    Google Scholar
     

  • Machalski, M. et al. The Danish Danian ammonites. In The 175th Anniversary of the Maastrichtian – A Celebratory Meeting, Maastricht, September 8–11, 2024. (eds. Jagt, J. W. M., Jagt-Yazykova, E. A., del Prado-Rebordinos, A. & Teschner, E.). 111–114 (Natuurhistorisch Museum Maastricht/Maastricht University/Centre Céramique, 2024).

  • Landman, N. H. Ammonites at Cretaceous-Paleogene sites in North America: Abundance and short-term survivorship. In The 175th Anniversary of the Maastrichtian – A Celebratory Meeting, Maastricht, September 8–11 (eds. Jagt, J. W. M., Jagt-Yazykova, E. A., del Prado-Rebordinos, A. & Teschner, E.). 107–109 (Natuurhistorisch Museum Maastricht/Maastricht University/Centre Céramique, 2024).

  • Landman, N. H., Garb, M. P., Rovelli, R., Ebel, D. S. & Edwards, L. E. Short-term survival of ammonites in New Jersey after the End-Cretaceous bolide impact. Acta Palaeontol. Pol. 57, 703–715 (2012).

    Article 

    Google Scholar
     

  • Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Landman, N. H., Goolaerts, S., Jagt, J. W. M., Jagt-Yazykova, E. A. & Machalski, M. Ammonites on the brink of extinction: Diversity, abundance, and ecology of the order Ammonoidea at the Cretaceous/Paleogene (K/Pg) boundary. In Ammonoid Paleobiology: From Macroevolution to Paleogeography (eds. Klug, C., Korn, D., De Baets, K., Kruta, I. & Mapes, R. H.). 497–553 (Springer Netherlands, 2015).

    Chapter 

    Google Scholar
     

  • Vellekoop, J. et al. Type-Maastrichtian gastropod faunas show rapid ecosystem recovery following the Cretaceous–Palaeogene boundary catastrophe. Palaeontology 63, 349–367 (2020).

    Article 

    Google Scholar
     

  • Ward, P. D., Flannery, D. T. O., Flannery, E. N. & Flannery, T. F. F. The Paleocene cephalopod fauna from Pebble Point, Victoria (Australia) – Fulcrum between two eras. Mem. Mus. Vic. 74, 391–402 (2016).

    Article 

    Google Scholar
     

  • De Baets, K., Hoffmann, R., Sessa, J. A. & Klug, C. Fossil focus: Ammonoids. Palaeont Online. 6, 1–15 (2016).


    Google Scholar
     

  • Surlyk, F., Damholt, T. & Morten, B. Stevns Klint, Denmark: Uppermost Maastrichtian chalk, Cretaceous–Tertiary boundary, and lower Danian bryozoan mound complex. Bull. Geol. Soc. Den. 54, 1–48 (2006).

  • Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Alvarez, W. et al. Impact theory of mass extinctions and the invertebrate fossil record. Science 223, 1135–1141 (1984).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hansen, H. J. et al. Cretaceous-Tertiary boundary spherules from Denmark, New Zealand and Spain. Bull. Geol. Soc. Den. 35, 75–82 (1986).


    Google Scholar
     

  • Surlyk, F. A. Cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin. In Cool-Water Carbonates (eds. James, N. P. & Clarke, J. A. D.). Vol. 56. 293–307 (SEPM Society for Sedimentary Geology, 1997).

  • Hart, M. B. et al. The Cretaceous–Palaeogene boundary succession at Stevns Klint, Denmark: Foraminifers and stable isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol. 224, 6–26 (2005).

    Article 

    Google Scholar
     

  • Gilleaudeau, G. J. et al. Stable isotope records across the Cretaceous-Paleogene transition, Stevns Klint, Denmark: New insights from the chromium isotope system. Geochim. Cosmochim. Acta. 235, 305–332 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frederiksen, J. A. et al. Combined cadmium and chromium isotopes record a collapse of bioproductivity across the Cretaceous—Paleogene boundary in the Danish basin. Chem. Geol. 654, 122058 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Damholt, T. & Surlyk, F. Nomination of Stevns Klint for Inclusion in the World Heritage List (Østsjællands Museum, 2012).

  • Heinberg, C. Lower Danian bivalves, Stevns Klint, Denmark: Continuity across the K/T boundary. Palaeogeogr Palaeoclimatol Palaeoecol. 154, 87–106 (1999).

    Article 

    Google Scholar
     

  • Heinberg, C. Morphotype biostratigraphy, diachronism, and bivalve recovery in the earliest Danian of Denmark. Bull. Geol. Soc. Den. 52, 81–95 (2005).


    Google Scholar
     

  • Rasmussen, J. A., Heinberg, C. & Håkansson, E. Planktonic foraminifers, biostratigraphy and the diachronous nature of the lowermost Danian Cerithium Limestone at Stevns Klint, Denmark. Bull. Geol. Soc. Den. 52, 113–131 (2005).


    Google Scholar
     

  • Adolfssen, J. S. & Ward, D. J. Crossing the boundary: An elasmobranch fauna from Stevns Klint. Denmark Palaeontology. 57, 591–629 (2014).

    Article 

    Google Scholar
     

  • Adolfssen, J. S. & Ward, D. J. Neoselachians from the Danian (Early Paleocene) of Denmark. Acta Palaeontol. Pol. 60, 313–338 (2013).


    Google Scholar
     

  • Schwarzhans, W. & Milàn, J. After the disaster: bony fish remains (mostly otoliths) from the K/Pg boundary section at Stevns Klint, Denmark, reveal consistency with teleost faunas from later Danian and Selandian strata. Bull. Geol. Soc. Den. 65, 59–74 (2017).


    Google Scholar
     

  • Hansen, T. Gastropods from the Cretaceous-Palaeogene boundary in Denmark. Zootaxa 4654, 1–196 (2019).

    Article 

    Google Scholar
     

  • Andersson, J. The Cerithium Limestone Member at Stevns Klint reflecting the carbonate production recovery after the K/Pg mass-extinction. MSc Thesis. 692, 32pp. Department of Geology, Lund University, Lund (2024).


    Google Scholar
     

  • Störling, T. et al. Insights into the K–Pg extinction aftermath: The Danish Cerithium Limestone Member. Bull. Geol. Soc. Den. 73, 175–191 (2024).


    Google Scholar
     

  • Machalski, M. Danian ammonites: A discussion. Bull. Geol. Soc. Den. 49, 49–52 (2002).


    Google Scholar
     

  • Rosenkrantz, A. Nye Iagttagelser over Cerithiumkalken i Stevns Klint med bemærkninger om grænsen mellem Kridt og Tertiær. Medd Dan. Geol. Foren. 6, 28–31 (1924).


    Google Scholar
     

  • Rasmussen, H. W. Echinoid and crustacean burrows and their diagenetic significance in the Maastrichtian-Danian of Stevns Klint, Denmark. Lethaia 4, 191–216 (1971).

    Article 

    Google Scholar
     

  • Birkelund, T. University of Copenhagen,. The last Maastrichtian ammonites. In Cretaceous-Tertiary Boundary Events. I. The Maastrichtian and Danian of Denmark (eds. Birkelund, T. & Bromley, R. G.). 51–57 (1979).

  • Birkelund, T. Ammonites from the Maastrichtian white chalk of Denmark. Bull. Geol. Soc. Den. 40, 33–81 (1993).


    Google Scholar
     

  • Rosenkrantz, A. Die Senon/Dan-Grenze in Dänemark. Ber dtsch. Ges Geol. Wiss. 11, 721–727 (1966).


    Google Scholar
     

  • Bromley, R. G. Trace fossils at omission surfaces. In The Study of Trace Fossils: A Synthesis of Principles, Problems, and Procedures in Ichnology (ed Frey, R. W.). 399–428 (Springer,1975).

    Chapter 

    Google Scholar
     

  • Surlyk, F., Håkansson, E. & Agger, P. Claus Heinberg – Trace fossils, Greenland expeditions and bivalves of the K–T boundary strata. Bull. Geol. Soc. Den. 69, 81–96 (2021).

  • Thomsen, E. Kalk og Kridt i den danske undergrund. In Danmarks Geologi Fra Kridt Til I Dag (ed Nielsen, O. B.). 31–68. (Geologisk Institut, Århus Universitet, 1995).


    Google Scholar
     

  • Rosenkrantz, A. et al. The K–T boundary strata North of Korsnæb, Stevns Klint, Denmark – Evolution and geometry revealed in a long, horizontal profile. Bull. Geol. Soc. Den. 69, 233–244 (2021).


    Google Scholar
     

  • Machalski, M., Świerczewska-Gładysz, E. & Olszewska-Nejbert, D. The end of an era: A record of events across the Cretaceous–Paleogene boundary in Poland. In Cretaceous of Poland and of Adjacent Areas: Field Trip Guides (eds. Walaszczyk, I. & Todes, J. P.). 37–86 (Faculty of Geology, University of Warsaw, 2022).

  • Hansen, T. & Surlyk, F. Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol. 399, 323–344 (2014).

    Article 

    Google Scholar
     

  • Christensen, L., Fregerslev, S., Simonsen, A. & Thiede, J. Sedimentology and depositional environment of lower Danian fish clay from Stevns Klint, Denmark. Bull. Geol. Soc. Den. 22, 193–212 (1973).

    CAS 

    Google Scholar
     

  • Bjerager, M. & Surlyk, F. Danian cool-water bryozoan mounds at Stevns Klint, Denmark—A new class of non-cemented skeletal mounds. J. Sediment. Res. 77, 634–660 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Håkansson, E. & Thomsen, E. Benthic extinction and recovery patterns at the K/T boundary in shallow water carbonates, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol. 154, 67–85 (1999).

    Article 

    Google Scholar
     

  • Machalski, M. The youngest Maastrichtian ammonite faunas from Poland and their dating by scaphitids. Cretac. Res. 26, 813–836 (2005).

    Article 

    Google Scholar
     

  • Machalski, M. Late Maastrichtian and earliest Danian scaphitid ammonites from Central Europe: Taxonomy, evolution and extinction. Acta Palaeontol. Pol. 50, 653–696 (2005).


    Google Scholar
     

  • Machalski, M. A new ammonite zonation for the Maastrichtian stage in Poland. In The Maastrichtian Stage; The Current Concept (eds. Jagt, J. W. M. & Jagt-Yazykova, E. A.). 40–44 (Natuurhistorisch Museum Maastricht, 2012).

  • Dunham, R. J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks—A Symposium (ed. Ham, W. E.). Vol. 1. 108–121 (American Association of Petroleum Geologists Memoir, 1962).

  • Embry, A. F. & Klovan, J. E. Absolute water depth limits of late Devonian paleoecological zones. Geol. Rundsch. 61, 672–686 (1972).

    Article 
    ADS 

    Google Scholar
     

  • de Lamarck, J. B. P. A. M. Systême des Animaux sans Vertèbres. (L’Auteur, 1801).

  • Kennedy, W. J. The ammonite fauna of the Calcaire à Baculites (Upper Maastrichtian) of the Cotentin Peninsula (Manche, France). Palaeontology 29, 25–83 (1986).


    Google Scholar
     

  • Øhlenschlæger, A., Milàn, J., Nielsen, A. T. & Thibault, N. The mobile domicile boring Trypanites mobilis revisited – New observations and implications for ecosystem recovery following the Cretaceous – Palaeogene mass extinction. Lethaia 55, 1–18 (2022).

    Article 

    Google Scholar
     

  • Ekdale, A. A. & Bromley, R. G. Sedimentology and ichnology of the Cretaceous-Tertiary boundary in Denmark; Implications for the causes of the terminal Cretaceous extinction. J. Sediment. Petrol. 54, 681–703 (1984).

    CAS 

    Google Scholar
     

  • Ciurej, A., Dubicka, Z. & Poberezhskyy, A. Calcareous dinoflagellate blooms during the late Cretaceous ‘greenhouse’ world—A case study from western Ukraine. PeerJ 11, e16201 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henderson, R. A. & McNamara, K. J. Taphonomy and ichnology of cephalopod shells in a Maastrichtian chalk from Western Australia. Lethaia 18, 305–322 (1985).

    Article 

    Google Scholar
     

  • Fernandez-Lopez, S. Ammonite taphocycles in carbonate epicontinental platforms. GeoResearch Forum. 6, 293–300 (2000).


    Google Scholar
     

  • Janiszewska, K., Mazur, M., Machalski, M. & Stolarski, J. From pristine aragonite to blocky calcite: Exceptional preservation and diagenesis of cephalopod nacre in porous Cretaceous limestones. PLoS ONE. 13, e0208598 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bramlette, M. N. & Martini, E. The great change in Calcareous nannoplankton fossils between the Maestrichtian and Danian. Micropaleontology 10, 291–322 (1964).

    Article 

    Google Scholar
     

  • MacLeod, N. An evaluation of criteria that may be used to identify species surviving a mass extinction. In New Developments Regarding the KT Event and Other Catastrophes in Earth History. 75–77 (1994).

  • Flessa, K. W. & Kowalewski, M. Shell survival and time-averaging in nearshore and shelf environments: Estimates from the radiocarbon literature. Lethaia 27, 153–165 (1994).

    Article 

    Google Scholar
     

  • Landman, N. H. et al. An unusual occurrence of Nautilus macromphalus in a cenote in the Loyalty Islands (New Caledonia). PLoS ONE. 9, e113372 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, J. R. & Cobban, W. A. The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming. Vol. USGS Professional Paper 393-A (1966).

  • Mapes, R. H. et al. Early taphonomy and significance of naturally submerged Nautilus shells from the New Caledonia region. PALAIOS 25, 597–610 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chamberlain, J. A. Jr., Ward, P. D. & Weaver, J. S. Post-mortem ascent of Nautilus shells: Implications for cephalopod paleobiogeography. Paleobiology 7, 494–509 (1981).

    Article 

    Google Scholar
     

  • Plummer, H. J. Foraminifera of the Midway formation in Texas. Univ. Tex. Bull. 6, 1–206 (1927).


    Google Scholar
     

  • Arenillas, I., Gilabert, V. & Arz, J. A. New biochronological scales of planktic foraminifera for the early Danian based on high-resolution biostratigraphy. Geoscience 11, 479 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Smit, J. Extinctions at the K/T boundary: Link or non-link to the Chicxulub impact event. International Symposium on Mesozoic–Cenozoic Bioevents: Possible Links to Impacts and Other Causes, Abstracts. 37–41 (2002).

  • Marshall, C. R. & Ward, P. D. Sudden and gradual molluscan extinctions in the latest Cretaceous in western European Tethys. Science 274,1360–1363 (1996).

  • Wang, S. C. & Marshall, C. R. Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30, 5–18 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Rosenkrantz, A. Faunaen i Cerithiumkalken og det hærdnede Skrivekridt i Stevns Klint. Medd Dan. Geol. Foren. 9, 509–514 (1939).


    Google Scholar
     

  • Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl. Acad. Sci. U S A. 99, 8139–8144 (2002).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kaim, A. & Nützel, A. Dead bellerophontids walking — The short Mesozoic history of the Bellerophontoidea (Gastropoda). Palaeogeogr Palaeoclimatol Palaeoecol. 308, 190–199 (2011).

    Article 

    Google Scholar
     

  • Barnes, B. D., Sclafani, J. A. & Zaffos, A. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl. Acad. Sci. U.S.A. 118, e2019208118 (2021).

  • Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hallam, A. & Wignall, P. B. Mass extinctions and sea-level changes. Earth-Sci. Rev. 48, 217–250 (1999).

    Article 
    ADS 

    Google Scholar